**Introduction**

Ce travail a pour but de décrire et illustrer les Xylariaceae récoltés lors de missions d’inventaire de la fonge des Antilles françaises commencées en 2003. En se fondant sur l’évaluation et la comparaison de leurs caractères morphologiques, quatorze taxons sont décrits, illustrés et commentés, comprenant les quatre taxons nouveaux. Les espèces décrites sont répertoriées en culture. Les résultats obtenus sont présentés dans un tableau synoptique, et un clé d’identification dichotomique est présentée.

**Mots-clés** : Ascomycota, Hypoxylacées, xylocladium-like, xylariacées, taxonomie.
Ascomycete.org

The taxa currently placed in Biscogniauxia conform to the genus concept of Nummularia by its apical apparatus and the asexual morph obtained in culture is composed of very rudimentary conidiophores (Pouzar, 1986; Ju et al., 1998), which sets Obolarina apart from Biscogniauxia. The monotypic genus Vivantia J.D. Rogers, Y.-M. Ju & Cand., represented by V. guadalupensis J.D. Rogers, Y.-M. Ju & Cand., should likewise be considered because it resembles Biscogniauxia in having widespread carbonaceous, corticulous, possibly bipartite stromata and a nodulisporium-like asexual morph (Rogers et al., 1996). It deviates from Biscogniauxia and most xylariaceous genera by its hyaline ellipsoid two-celled ascospores but its phylogenetic affinities within the Xylariaceae and the Hypoxyloideae are still unknown.

The taxa currently placed in Biscogniauxia conform to the genus concept of Nummularia (Tulasne & Tulasne 1863). For nomenclatural reasons the name Nummularia was abandoned and after having been included in section Applanata of Hypoxylon by Miller (1961) and in Nummulario House by Martin (1969), the taxa formerly placed in Nummularia were eventually accommodated in Biscogniauxia, a genus name resurrected by Pouzar (1979) to stabilize their status. Further detailed information on nomenclature, taxonomic delimitation, and ecology of Biscogniauxia was given by Ju et al. (1998) in their comprehensive overview of the genus worldwide, with additions by Rogers et al. (1996; 1997) and Ju & Rogers (2001).

The first records of Xylariaceae from Guadeloupe and Martinique date back to Roussel (1870), who mentioned two Xylaria spp. and a Hypoxylon “rubiginosum” which most likely does not represent material assignable to Biscogniauxia. Duss (1903) mentioned two collections on dead wood from Guadeloupe he referred to as Nummularia bulliardii Tul. and one on rotten palm (Oreodoxa var. oleaceae) as N. pachylyma Lév., “large form”. In absence of microscopic data, this material should be reexamined to be identified in the light of modern taxonomic concepts since the former name [as B. nummularia (Bull.) Kunze] is currently restricted to a temperate European species occurring on Fagus and the latter regarded as a synonym of B. capnodes by Ju et al. (1998). All the specimens collected from Guadeloupe and Martinique by Duss, including the

---

**Dichotomous key to Biscogniauxia taxa known from French West Indies**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ascospores bearing a cellular appendage or with a flat truncate, exceptionally apiculate lower end</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>Ascospores lacking a cellular appendage, with a rounded lower end</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ascospores dark brown to blackish brown</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Ascospores light brown to medium brown</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Ascospores almost equilateral, 9.5–12 × 6–7 μm, with a small, inconspicuous, usually collapsed cellular appendage</td>
<td><em>B. breviappendiculata</em> sp. nov.</td>
</tr>
<tr>
<td>3</td>
<td>Ascospores inequilateral, with a conspicuous rounded to broadly conical cellular appendage</td>
<td><em>B. philippinensis</em></td>
</tr>
<tr>
<td>4</td>
<td>Ascospores 20–24.5 × 10.6–13.6 μm</td>
<td><em>B. philippinensis</em></td>
</tr>
<tr>
<td>4</td>
<td>Ascospores averaging smaller</td>
<td><em>B. grenadensis</em></td>
</tr>
<tr>
<td>5</td>
<td>Ascospores strongly inequilateral, 13.1–15.2 × 6.2–7.9 μm, Qe = 2</td>
<td><em>B. martinecensis</em> sp. nov.</td>
</tr>
<tr>
<td>5</td>
<td>Ascospores slightly inequilateral to almost equilateral, 9.5–12.8 × 7.4–9.8 μm, Qe = 1.3</td>
<td><em>B. philippinensis</em></td>
</tr>
<tr>
<td>6</td>
<td>Perithecial contents sticky, due to the presence of allophyses; ascospores 10.1–11.5 × 4.6–5.7 μm, always with a conspicuous rounded cellular appendage</td>
<td><em>B. viscosicentra</em></td>
</tr>
<tr>
<td>6</td>
<td>Perithecial contents not sticky, ascospores with cellular appendage often collapsed or absent</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Ascospores 8.8–10.6 × 4.5–5 μm, with consistently flat and rarely appended lower end</td>
<td><em>B. uniapiculata</em></td>
</tr>
<tr>
<td>7</td>
<td>Ascospores averaging more than 10 μm long, with appended or apiculate lower end</td>
<td><em>B. capnodes</em></td>
</tr>
<tr>
<td>8</td>
<td>Ascospores 10.5–12.5 × 5.1–6 μm with appended lower end</td>
<td><em>B. capnodes</em></td>
</tr>
<tr>
<td>8</td>
<td>Ascospores 11.4–13.6 × 5.5–6.5 μm, with lower or both ends often apiculate</td>
<td><em>B. capnodes</em></td>
</tr>
<tr>
<td>9</td>
<td>Ascospores 34.5–40.8 × 11.5–14.1 μm, epispore with wide longitudinal ridges</td>
<td><em>B. sinuosa var. macrospora</em> var. nov.</td>
</tr>
<tr>
<td>9</td>
<td>Ascospores averaging less than 20 μm long, epispore smooth</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ascospores ellipsoid with one or two pinched ends, strongly inequilateral</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ascospores ellipsoid with rounded ends, almost equilateral</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ascospores 10.3–11.9 × 6.5–7.7 μm</td>
<td><em>B. citriflora</em></td>
</tr>
<tr>
<td>11</td>
<td>Ascospores 17.7–19.5 × 8.3–9.8 μm</td>
<td><em>B. citriflora var. macrospora</em></td>
</tr>
<tr>
<td>12</td>
<td>Ascospores 12.8–14.5 × 7.7–8.9 μm, frequently lemon-shaped</td>
<td><em>B. capnodes var. limoniispora</em></td>
</tr>
<tr>
<td>12</td>
<td>Ascospores averaging less than 11 μm long, ellipsoid almost equilateral</td>
<td><em>B. capnodes var. limoniispora</em></td>
</tr>
<tr>
<td>13</td>
<td>Ascospores blackish brown to blackish, 9–13.3 × 4.6–7.2 μm (Me = 11 × 6 μm)</td>
<td><em>B. capnodes</em></td>
</tr>
<tr>
<td>13</td>
<td>Ascospores light to medium brown, averaging less than 10 μm long and more narrowly ellipsoid</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Ostioles punctate; ascospores 8.5–10.9 × 4–5.6 μm, with germ slit always as long as spore length, fairly conspicuous</td>
<td><em>B. capnodes var. theissenii</em></td>
</tr>
<tr>
<td>14</td>
<td>Ostioles papillate, black; ascospores more narrowly ellipsoid 8.1–9.4 × 3.4–3.9 μm, with blurred germ slit most often less than spore-length</td>
<td><em>B. nigropapillata</em> sp. nov.</td>
</tr>
</tbody>
</table>
Xylariaeae, were deposited in B and have unfortunately been destroyed and lost during World War II (R. Lücking, pers. comm.). As a result, the genus Biscogniauxia was so far undocumented in Guadeloupe and Martinique and information on records of neotropical taxa of Biscogniauxia was limited to that provided by Ju et al. (1998) and Miller (1961) for Central and South America, Rogers et al. (2000) for Venezuela and San Martín & Rogers (1993) for México.

The plentiful material of Biscogniauxia collected during our forays was studied based on the morphological taxonomic concepts defined by Ju et al. (1998). This led to the identification of fourteen taxa including nine known taxa, viz.: B. capnodes (Berk.) Y.-M. Ju & J.D. Rogers, B. capnodes var. liminiospora Y.–M. Ju & J.D. Rogers, B. capnodes var. theissenii (Syd. & P. Syd.) Y.-M. Ju & J.D. Rogers, B. citiformis (Whalley, Hammelev & Talig.) Van der Gucht & Whalley, B. citiformis var. macrospora Van der Gucht & Whalley, B. grenadensis (J.H. Mill.) Whalley & Laessøe, B. philippinensis (Ricker) Whalley & Laessøe, B. uniapiculata (Penz. & Sacc.) Whalley & Læssøe and B. viscosicentra J.D. Rogers, F. San Martín & Y.-M Ju, of which only B. grenadensis and B. uniapiculata were already known from the Caribbean. A previous collection from Guadeloupe (GUAD-213) with mixed abnormal ascospores either appendaged or apiculate was mentioned by Ju et al. (1998), but without assigning it to a species. We examined and illustrated a part of this collection and we suggest it might be an abnormal form of B. uniapiculata which appears itself to be either a highly variable species or a complex of closely related species.

Four new taxa are proposed to accommodate collections that could not be equated to known taxa, viz.: B. breviappendiculata J.Fourn. & Lechat, B. martinicensis J.Fourn. & Lechat, B. nigropapillosa J. Fourn. & Lechat and B. sinuosa (Theiss.) Y.-M. Ju & J.D. Rogers var. macrospora J. Fourn. & Lechat. Their distinctive features and their differences with known taxa are illustrated and commented and we propose a dichotomous identification key to the Biscogniauxia taxa dealt with in this survey. As ascospore morphology appeared most often more discernible than stromatal morphology, we propose a synoptic figure plate for comparing the ascospores of all taxa at the same scale.

Materials and methods

The observations were carried out on dry material rehydrated in water. Measurements of ascii and ascospores were made in water and ascospores measurements processed with the free software Piximeatre 5.2 (http://ach.log.free.fr/Piximeatre/). In the formula given by this software the values in brackets represent the extreme values (20%) that are not taken into account for the calculation, N represents the number of ascospores measured, Q the quotient length/width, Me the mean values of length × width and Qe the mean value of quotient length/width. The amyloid reaction of the ascus apical apparatus was tested by adding a drop of Melzer’s reagent. Further, Paraphyses, ostioles and ostiolar ostioles were stained by a water mount of perithecial contents. Microscopic observation of the asci and the paraphyses was carried out after 1 min in 1% SDS and mounting in diluted blue Pelikan® ink, black Pelikan® ink or Melzer’s reagent. Measurements of stromata, ascus and ascus apical apparatus are recorded as height × width. Measurements of appendaged ascospores do not include the appendage which may be collapsed or absent. The term punctate is here applied to ostioles appearing as a shallow discoid depression surrounded by a low or slightly prominent rim. In absence of a surrounding rim, ostioles are termed umbilicate. Terminology and observation procedures follow Ju et al. (1998). Nomenclature follows MycoBank.

Photomicrographs were taken with a Nikon Coolpix 995 digital camera either directly mounted on a stand or, for higher magnifications, through the eyepiece of an Olympus SZ60 stereomicroscope, by the means of a 30 mm diameter adapter. Photomicrographs were taken with the same camera mounted on the trinocular port of a Leitz Orthoplan microscope. The digitized photographs were processed with Adobe Photoshop Elements 10 and the figures assembled with the same software.

Taxonomy

Biscogniauxia breviappendiculata J. Fourn. & Lechat, sp. nov. – MycoBank MB8280802. Plate 2.

Diagnosis: Differs from all Biscogniauxia taxa featuring appendaged blackish brown ascospores by smaller, equilateral ascospores averaging 10.8 × 6.6 μm, with a small, inconspicuous, fagacious cellular appendage.


Eymology: From Latin brevis = short, small and appendiculatus = appendaged, for the small, inconspicuous cellular appendages of ascospores.

Stromata aplplanate, orbicular to irregularly lobed, 4–28 mm long × 3–22 mm wide × 0.3–0.35 mm thick, with sloping margins, outer dehiscing layer not seen; mature surface dull greyish brown to blackish brown, carbonaceous beneath surface and between perithecia, tissue beneath perithecia inconspicuous, not carbonaceous, underlying bark tissue slightly blackened. Perithecia oblong to obovoid, frequently laterally flattened, 0.2–0.25 mm high × 0.1–0.2 mm wide, opening centrally through individual ostioles. Ostioles papillose, apically truncate, shiny black, evenly distributed or in small clusters, contrasting against the dull blackish brown stromatal surface.

Asci cylindrical, with (6–)8 obliquely uniseriate ascospores, short-stipitate, the spore-bearing parts 74–81 × 7–8 μm, fragile and easily ruptured at maturity, the stipes 18–22 μm long, with apical apparatus 3.1–3.7 × 2.8–3.2 μm (Me = 3.5 × 3 μm; N = 20), shortly tubular, slightly apically flared, bluing in Melzer’s reagent. Paraphyses in sparse bundles, hyalophore, unbranched, thin-walled, septate, 6–7 μm wide at base, tapering above ascii. Ascospores (8.9–9.5–11.9–(12.6) × (5.5–)6.1–71–7.4 μm, not including appendage, Q = (1.4–)1.5–1.9–(2.1), N = 120 (Me = 10.8 × 6.6 μm; Qe = 1.7), dark brown to blackish brown, ellipsoid-equilateral with broadly rounded upper end and truncate lower end, bearing a hyaline, thin-walled conical to hemispherical cellular appendage 1–1.6 μm long × 1.3–2 μm wide (Me = 1.2 × 1.6 μm, N = 18), often collapsed and inconspicuous at maturity or absent; smooth-walled, with a conspicuous, unilateral, straight germ slit almost spore-length.

Asexual morph on the natural substrate not seen.

Known distribution: Martinique, only known from the holotype.

Discussion: This Biscogniauxia is characterized by thinly appla- nate entirely carbonaceous stromata with a blackish brown surface and shiny black papillate ostioles with a truncate top, combined with two-celled, almost equalateral blackish brown ascospores averaging 10.8 × 6.6 μm with a small, inconspicuous cellular appendage and a conspicuous germ slit almost spore-length.

Appendaged ascospores of most Biscogniauxia taxa are significant ly larger than those of B. breviappendiculata (Ju et al., 1998; Ju & Rogers, 2001). Among the smaller-spored species, it resembles B. plumbea Y.-M. Ju & J.D. Rogers, known from Hawai, which features a thin stroma 0.4–0.6 mm thick with slightly papillate ostioles and ascospores with small appendages 1.5–2 μm long. However, the stromatal surface of B. plumbea is grey and its ascospores differ in being brown, inequilateral and larger, 12–14.5 × 6–7 μm with a ratio L/w >2, vs. 1.7 in the new species.

Ascospores of B. doidgeae (J.H. Miller) Whalley & Laessoe, known from South Africa, are 8–11.5 × 4.5–5 μm, thus comparable with our species as to their length but narrower, paler brown, inequilateral and lacking a germ slit (Ju & Rogers, 2001). Moreover, the stroma of B. doidgeae are 2 mm thick, with tubular perithecia and umbilicate ostioles.

Ascospores of B. uniapiculata, which is pantropical, are 10–14 × 5–7 μm and, as in our species, their appendages are often collapsed.
Plate 1 – Comparison at the same scale of ascospores of Biscogniauxia taxa known from Guadeloupe and Martinique
A: B. breviapendiculata MJF 15071 (holotype); B: B. capnodes MJF 07267; C: B. capnodes var. limonispora MJF 07287; D: B. capnodes var. theissenii MJF 13086; E: B. citiformis MJF 15067; F: B. citiformis var. macrospora MJF 13088; G: B. grenadensis MJF 10213; H: B. martinicensis MJF 14039; I: B. nigropapillata CLL 5254 (holotype); J: B. philippinensis MJF 13161; K: B. sinuosa var. macrospora MJF 16072 (holotype); L: B. uniapiculata MJF 10244; M: B. uniapiculata MJF 13191; N: B. cf. uniapiculata GUAD-213; O: B. viscosicentra CLL 2346. Scale bar (B) = 10 μm.
Plate 2 – Biscogniauxia breviappendiculata
MJF 15071. A, C: Stromata with lobed outline rupturing the bark; B: Shiny black papillate ostioles with truncate top; D: Stroma in vertical section showing the thick carbonaceous subsurface, the perithecia and the indistinct subperithecial tissue; E, F: Mature asci in 1% SDS and black Pelikan® ink respectively; G: Immature ascospore with a conical cellular appendage (arrow), in diluted blue Pelikan® ink; H, I: Mature ascospores with hemispherical to conical cellular appendages (arrows), in India ink and diluted blue Pelikan® ink respectively; J: Ascal apical apparatus, in Melzer’s reagent; K: Ascospores in 1% SDS, some showing conspicuous germ slits and truncate bases. Scale bars: A = 10 mm; B = 0.2 mm; C = 5 mm; D = 0.5 mm; E, F = 20 μm; G-J = 5 μm; K = 10 μm.
Ascomycete.org

72


Stromata aplatanate to pulvinate, orbicular to ellipsoid-lobed, 3–46 mm long × 3–18 mm wide × 0.5–1 mm thick, often coalescent into elongate to irregular compound stromata, with slightly sloping margins, showing no trace of the outer dehiscent layer; mature surface dark grey, olivaceous brown, dull black to rarely shiny black, slightly uneven, carbonaceous beneath surface and between perithecia; tissue beneath perithecia 0.1–0.2 mm thick, composed of blackened bark tissue, not to slightly carbonaceous. Perithecia tubular to ovoid or short-cylindrical, frequently laterally and basally flattened, 0.38–0.85 mm high × 0.18–0.5 mm wide, opening centrally or laterally through individual ostioles, two adjacent perithecia rarely sharing a common ostiole. Ostioles punctate to slightly papillate by the presence of a raised rim, ca. 0.4 μm diam, inconspicuous, mostly evenly distributed, often plugged with greyish substance.

Asci cylindrical, with 8 obliquely uniseriate overlapping ascospores, subsebsile, the spore-bearing parts 85–97 × 8–10 μm, fragile and easily ruptured at maturity, the stipes 6–15 μm long, with apical apparatus 1.7–3.8 × 3.1–4.1 μm (Me = 2.5 × 3.6 μm; N = 80), discol to cuboid, at times slightly wedge-shaped, bluing in Melzer’s reagent.

Paraphyses copious, hyphal, unbranched, thin-walled, septate, 6–9 μm wide at base, tapering above asci. Ascospores (8.1–9.9–13.3(–13.5) × (4.2–)4.6–7.8(–8.1) μm, Q = (1.4–)1.5–2.1(–2.2), N = 540 (Me = 11.1 × 6.2 μm, Q = 1.8), one-celled, ellipsoid almost equilateral with narrowly to broadly rounded ends, dark brown to blackish brown, smooth-walled, with a conspicuous, unilateral, straight germ slit spore-length or slightly less.

Asexual morph on the natural substrate not seen. Asexual morph in culture on OA periconiella-like, based on material from Taiwan (Ju et al., 1998).

Specimens examined: French West Indies: Guadeloupe: Basse-Terre, Petit-Bourg, Carrère, in the private garden of Félix Lurel, on a dead corticated branch, 11 Aug. 2010, leg. C. Lechat, CLLGUAD 007 (LIP); Basse-Terre, Sainte-Rose, Sofiaïa, path to Saut des Trois Cornes, mesophilic rainforest, dead corticated branch, 3 Sept. 2004, leg. C. Lechat, CLL 2302 (LIP). Martinique: Les Anses-d’Arlet, track to Morne Salomon, coastal xerophilic forest, on a dead corticated branch ca. 4 cm diam, 5 Aug. 2016, leg. J. Fournier, MJF 16123 (LIP); ibid., MJF 16128, MJF 16131, MJF 16135 (LIP); Case-Pilote, Fond Bouché, mesophilic rainforest, on a dead corticated branch, 17 Aug. 2013, leg. J. Fournier, MJF 13279 (LIP); ibid., MJF 13303 (LIP); Case-Pilote, Morne Rose, mesophilic rainforest, on a dead corticated branch, 1 Sept. 2010, leg. J. Fournier, MJF 10306 (LIP); ibid., MJF 10313 (LIP); ibid., 8 Aug. 2013, MJF 13069 (LIP); ibid., 14 Jun. 2015, MJF 15062 (LIP); ibid., MJF 15086 (LIP); Case-Pilote, Savane Saint-Cyr, track to Plateau Concorde, hygrophilic rainforest, 600–650 m, on a dead corticated branch, 25 Aug. 2007, leg. J. Fournier, MJF 07097 (LIP); ibid., MJF 07099 (LIP); ibid., 27 Aug. 2010, MJF 10168 (LIP); Fort-de-France, Abalon, track to Plateau Michel, hygrophilic rainforest, on a dead corticated branch, 15 Aug. 2013, leg. J. Fournier, MJF 13221 (LIP); ibid., 15 Jun. 2015, MJF 15097 (LIP); ibid., 7 Aug. 2016, MJF 16152 (LIP); Le Diamant, Morne Blanc, trail from Ancinel to Morne du Riz through Morne Fournerey, meso- to xerophilic forest, dead corticated branch, 18 Aug. 2013, leg. J. Fournier, MJF 13311 (LIP); La Trinité, Pointe Bateau, coastal meso- to xerophilic forest, on a dead corticated branch, 26 Aug. 2010, leg. J. Fournier, MJF 10150 (LIP); ibid., MJF 10155 (LIP); La Trinité, Pointe Rouge, coastal meso- to xerophilic forest, on a dead corticated branch, 22 Aug. 2010, leg. J. Fournier, MJF 10043 (LIP); ibid., 29 Aug. 2010, MJF 10237 (LIP); ibid., 1 Aug. 2016, leg. J. Fournier, MJF 16070 (LIP); La Trinité (Caravelle peninsula), Balata, xerophilic coastal forest, on a dead corticated branch, 11 Aug. 2013, leg. J. Fournier, MJF 13130 (LIP); Le Prêcheur, Anse Couleuvre, coastal mesophilic rainforest, on a dead corticated branch, 18 Aug. 2005, leg. C. Lechat, CLL 5004 (LIP); ibid., 2 Sept. 2007, leg. J. Fournier, MJF 07267 (LIP); ibid., MJF 07271 (LIP); ibid., MJF 07285 (LIP); Le Saint-ESprit, Bois La Charles, mesophilic rainforest, on a dead corticated branch, 25 Aug. 2004, leg. C. Lechat, CLL 2085 (LIP); Les Trois-Ilets, Ravine Caverne, Piton Bellevue, coastal meso- to xerophilic forest, dead corticated twig, 3 Aug. 2016, leg. P.-A. Moreau, MJF 16112; Sainte-Luce, Montivral forest, relic hygrophilic rainforest, on a dead corticated branch, 23 Aug. 2008, leg. C. Lechat, CLL 8280 (LIP); Sainte-Marie, La Philippe, coastal mesophilic rainforest, on a dead corticated branch, 31 Aug. 2010, leg. J. Fournier, MJF 10298 (LIP); Schoelcher, Case Navire River, mesophilic rainforest, 28 Aug. 2010, leg. J. Fournier, MJF 10205 (LIP); ibid., 5 Aug. 2013, MJF 13003 (LIP); Schoelcher, Fond Lahaye, banks of Fond Lahaye River, mesophilic rainforest, on a dead corticated branch, 12 Aug. 2013, leg. J. Fournier, MJF 13147 (LIP); ibid., MJF 13153 (LIP); ibid., MJF 13158–2 (LIP).

Known distribution: Pantropical (Ju et al., 1998).

Discussion: All the collections cited above fit in the concept of B. capnodes as defined by Ju et al. (1998) in having thin to thick effused carbonaceous stromata, ovoid to tubular perithecia, punctate to slightly papillate ostioles and one-celled, brown, ellipsoid-equilateral ascospores 8.5–15 × 5–7.5 μm with a conspicuous straight germ slit spore-length. Plate 3 shows pulvinate stromata with tubular perithecia and thinly effused stromata with short-cylindrical to obovoid perithecia, two extremes on a continuum of morphological variations encountered in this species. Plate 4 (E–H) and Table 1 illustrate the variations in ascospore size and shape within the tight accepted for this species and no clear correlation between stromatal and ascospore morphology can be assessed when a large number of collections is studied. As ostiole and ascospore morphology is likewise frequently variable within the same collection, they cannot be used as differential characters. These variations between collections were already noticed by previous authors and led to the description of manifold species and varieties listed by Miller (1961). Miller regarded these subtropical to tropical taxa as varieties of Hypoxylon nummularium Bull., the north temperate...
European species affiliated to *Fagus*, currently known as *Biscogniauxia nummularia* (Bull.) Kuntze. The varieties of *H. nummularium* recognized by Müller (1961), viz.: var. *australe* (Cooke) J.H. Mill., var. *exutans* (Cooke) J.H. Mill., var. *merrillii* (Bres.) J.H. Mill., var. *pseudopachylophoma* (Speg.) J.H. Mill., var. *rumpens* (Cooke) J.H. Mill., and var. *theissenii* (Syd. & P. Syd.) J.H. Mill. were distinguished based on differences in ascospore size and morphology. Owing to the absence of clear-cut differences in the morphology of cultures and ascospores within representatives of most of these varieties, Ju et al. (1998) revised the taxonomic status of these taxa and recognized *B. nummularia* as a European species different from its tropical counterparts and resurrected *Sphaeria capnodes* Berk., combining it in *B. capnodes*. As a result of their revision, the varieties *merrillii* and *pseudopachylophoma* were synonymized with *B. capnodes*, and the varieties *rumpens* (including var. *australe*) and *theissenii* were kept as varieties of *B. capnodes*. Furthermore, the new variety *limonispora* Y.-M. Ju & J.D. Rogers was erected to accommodate a collection from Thailand with slightly larger and often lemon-shaped ascospores (Ju et al., 1998; this paper). Although it would be tempting to further segregate taxa from *B. capnodes* in its wide current sense, our observations show that morphology alone is unable to subdivide *B. capnodes*, which must be seen as a widespread tropical species exhibiting a wide range of morphological variations, even within small islands like Guadeloupe and Martinique.
Plate 4 – Biscogniauxia capnodes

A, B, D, F: MJF 15086; C, E: MJF 07267; G, H: MJF 13147. A, B: Mature asci in dilute blue Pelikan® ink and Melzer’s reagent respectively; C: Ascus apical apparatus, in Melzer’s reagent; D: Two ascospores showing a germ slit, in 1% SDS; E-H: Ascospores of four different collections showing variations in size and shape, at same scale, in 1% SDS. Scale bars: A, B = 20 μm; C, E-H = 10 μm; D = 5 μm.
### Table 1 – Ascospore dimensions in nine collections of *B. capnodes* showing the range of intraspecific variations, compared with those recorded by Ju et al. (1998).

<table>
<thead>
<tr>
<th>Collections number</th>
<th>Ascospore measurements with extreme values in parentheses</th>
<th>Q = quotient l/w N = number of measurements</th>
<th>Mean values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLL 2085</td>
<td>(9.1–)9.7–11.6 × (4.9–)5.4–6.1–(6.4) μm</td>
<td>Q = (1.5–)1.6–2–(2.1), N = 60</td>
<td>Me = 10.3 × 5.7 μm, Qe = 1.8</td>
</tr>
<tr>
<td>CLL 8280</td>
<td>(10–)10.5–12.4–13 × (5.8–)6–6.7–(7.4) μm</td>
<td>Q = (1.5–)1.6–1.9–(2), N = 60</td>
<td>Me = 11.3 × 6.4 μm, Qe = 1.8</td>
</tr>
<tr>
<td>MJF 07267</td>
<td>(9.1–)9.6–11.6–(12.1) × (5.2–)5.8–6.7–(7.4) μm</td>
<td>Q = (1.4–)1.5–1.9–(2.1), N = 60</td>
<td>Me = 10.6 × 6.3 μm, Qe = 1.7</td>
</tr>
<tr>
<td>MJF 07285</td>
<td>(8.1–)9.1–10.6–(11.4) × (4.2–)4.7–6.1–(6.7) μm</td>
<td>Q = (1.4–)1.6–2–(2.4), N = 60</td>
<td>Me = 9.8 × 5.4 μm, Qe = 1.9</td>
</tr>
<tr>
<td>MJF 10205</td>
<td>(10.3–)11.4–13.3–(13.5) × (6.1–)6.2–7.2–(7.5) μm</td>
<td>Q = (1.6–)1.7–2–(2.1), N = 60</td>
<td>Me = 12.4 × 6.7 μm, Qe = 1.8</td>
</tr>
<tr>
<td>MJF 13147</td>
<td>(9.8–)10.9–12.7–(13.5) × (5.3–)5.7–6.7–(7.4) μm</td>
<td>Q = (1.6–)1.7–2–(2.2), N = 60</td>
<td>Me = 11.8 × 6.2 μm, Qe = 1.9</td>
</tr>
<tr>
<td>MJF 13153</td>
<td>(8.7–)9–10–(11.1) × (4.3–)4.6–5.3–(5.7) μm</td>
<td>Q = (1.6–)1.8–2–(2.2), N = 60</td>
<td>Me = 9.6 × 4.9 μm, Qe = 1.9</td>
</tr>
<tr>
<td>MJF 15086</td>
<td>(11.5–)11.8–13.1–(14.4) × (5.9–)6.4–7.2–(7.6) μm</td>
<td>Q = (1.6–)1.7–2–(2.2), N = 60</td>
<td>Me = 12.5 × 6.7 μm, Qe = 1.9</td>
</tr>
<tr>
<td>MJF 16112</td>
<td>(10.1–)10.7–12.9–(13.3) × (6–)6.7–7.8–(8.1) μm</td>
<td>Q = (1.4–)1.5–1.8–(2), N = 60</td>
<td>Me = 11.8 × 7.2 μm Qe = 1.6</td>
</tr>
<tr>
<td>Cumulated values</td>
<td>(8.1–)9–13.3–(13.5) × (4.2–)4.6–7.8–(8.1) μm</td>
<td>Q = (1.4–)1.5–2–(2.2), N = 540</td>
<td>Me = 11.1 × 6.2 μm, Qe = 1.8</td>
</tr>
<tr>
<td>Ju et al. (1998)</td>
<td></td>
<td></td>
<td>Me = 11.7 × 6.2 μm, Qe = 1.9</td>
</tr>
</tbody>
</table>


**Stromata** aplanate, ellipsoid-lobed, 3–28 mm long × 3–14 mm wide × 0.4–0.7 mm thick, partly coalescent into elongate compound stromata, with slightly sloping margins showing no trace of the outer dehiscing layer; mature surface greyish black to dull black, matt, uneven and slightly roughened, carbonaceous beneath surface and between perithecia, tissue beneath perithecia 0.3–0.8 mm thick, dark brown, composed of blackened bark tissue, not carbonaceous. **Perithecia** tubular to short-cylindrical, frequently laterally and basally flattened, 0.3–0.5 mm high × 0.1–0.25 mm wide, opening centrally or laterally through individual ostioles, two adjacent perithecia at times sharing a common ostiole. **Ostioles** punctate, surrounded by a slightly raised rim, 25–70 μm diam, inconspicuous, evenly distributed, at times plugged with greyish to whitish substance.

**Asci** cylindrical, with (6–)8 obliquely uniseriate ascospores, subsessile, the spore-bearing parts 97–106 × 10–11 μm, the stipes 10–12 μm long, with apical apparatus 1.5–2.2 × 3.9–4.6 μm (Me = 2 × 4.3 μm; N = 20), discolored, trapezoidal, bluing in Melzer’s reagent. **Para-physes** copious, hyphal, unbranched, thin-walled, septate, 2.5–4.5 μm wide at base, tapering above asci, filled with dense refractive material, evolving alophyses but not rendering the perithecial contents sticky. **Ascospores** (11.7–)12–14.5–(15) × (7.3–)7.7–8.9–(9.3) μm, Q = (1.4–)1.5–1.8–(1.9), N = 60 (Me = 13.5 × 8.3 μm; Qe = 1.6), one-celled, broadly ellipsoid almost equilateral, frequently lemon-shaped with narrowly rounded to slightly pinched ends, dark brown to blackish brown, smooth-walled, with a thin, unilateral, straight germ slit spore-length.

**Asexual morph** on the natural substrate not seen. Asexual morph in culture on OA like in the typical variety (Ju et al., 1998).

**Specimen examined:** French West Indies: Martinique: Prêcheur, C. Lécuru, MJF 07287 (LIP).

**Known distribution:** Martinique (this paper), Thailand (Ju et al., 1998).

**Discussion:** The current concept of *B. capnodes* results from the segregation of three varieties from the typical variety based on ascospore morphology (Ju et al., 1998). *Biscogniauxia capnodes var. limoniispora* is similar to *B. capnodes* in having entirely carbonaceous aplanate stromata with perithecia opening separately through punctate ostioles and non-appended ellipsoid-equilateral ascospores. It was segregated from typical *B. capnodes* on account of its larger, often lemon-shaped ascospores. The holotype of *B. capnodes var. limoniispora* is a collection from Thailand, featuring ascospores 11.5–14 × 6–7.5 μm (Ju et al., 1998). Our collection from Martinique conforms well to this taxon in most respects, especially the unusual ascospore shape and length, but deviates in its wider ascospores 7.7–8.9 μm wide. *B. capnodes var. limoniispora* was only known from the type collection, thus its intraspecific variations are unknown. Preferably to the erection of a further new variety based on the slightly deviating ascospore width encountered in the material from Martinique described here, it appears more appropriate to regard this collection as *B. capnodes var. limoniispora* until this taxon becomes better documented. This decision was supported by Dr. Y.-M. Ju (pers. comm.).

Both *B. citriformis* (Whalley, Hammelov & Talig.) Van der Gucht & Whalley and *B. citriformis var. macrospora* Van der Gucht & Whalley possess ascospores referred to as lemon-shaped. Both are present in Martinique (this paper) and primarily differ in having strongly inequilateral ascospores with pinched ends that cannot be confused with those of *B. capnodes var. limoniispora*.


**Stromata** aplanate, ellipsoid-lobed, ellipsoidelongate, often coalescent into elongate compound stromata, 5–88 mm long × 4–12 mm wide × 0.35–0.6 mm thick, with sterile sloping margins showing no trace of the outer dehiscing layer; mature surface dull black, overall matt, uneven and slightly roughened, in places reddish brown or olivaceous brown, carbonaceous beneath surface and between perithecia, tissue beneath perithecia 0.1–0.2 mm thick, dish brown or olivaceous brown, carbonaceous beneath surface and between perithecia, tissue beneath perithecia 0.1–0.2 mm thick, composed of blackened bark tissue, not carbonaceous. **Perithecia** tubular to short-cylindrical, frequently laterally and basally flattened, 0.35–0.42 mm high × 0.12–0.35 mm wide, opening centrally or laterally through individual ostioles, two adjacent perithecia at times sharing a common ostiole. **Ostioles** umbilicate to punctate, with or without a slightly raised black rim, 40–70 μm diam, often inconspicuous, evenly distributed, at times plugged with white substance.

**Asci** cylindrical, with (4–6–8) uniseriate overlapping ascospores, subsessile, the spore-bearing parts 67–78 × 4.5–5 μm, fragile and easily ruptured at maturity, the stipes 8–14 μm long, with apical apparatus 1.3–1.9 × 2–2.4 μm (Me = 1.6 × 2.2 μm; N = 20), slightly tra-
Plate 5 - Biscogniauxia capnodes var. limoniispora

MJF 07287. A: Confluent stromata on host surface; B, D: Stromatal surface in close-up showing the punctate ostioles plugged with white substance, in D with slightly raised rims; C: Stroma in vertical section (broken) showing the carbonaceous tissue encasing the tubular to flattened perithecia; E, F: Mature and immature asci interspersed with paraphyses with refractive content, in diluted blue Pelikan® ink and in 1% SDS respectively; G: Ascal apical apparatus, in Melzer’s reagent; H: Ascospore showing a faint germ slit spore-length, in diluted blue Pelikan® ink; I: Ascospores in 1% SDS, some typically lemon-shaped. Scale bars: A = 10 mm; B, D = 0.2 mm; C = 0.5 mm; E, F = 20 μm; G, H = 5 μm; I = 10 μm.
peozid, bluing in Melzer’s reagent. **Paraphyses** copious, hyphal, unbranched, thin-walled, septate, 4–6 μm wide at base, tapering above asci. **Ascospores** (8.4–18.5–10.9(–11.8) × (3.73–)4.6–(6.7) μm, Q = (1.6–1).8–2.3(–2.8), N = 120 (Me = 9.6 × 4.7 μm; Qe = 2), one-celled, ellipsoid almost equilateral with narrowly to broadly rounded ends, medium brown, smooth-walled, with a conspicuous, unilateral, straight germ slit spore-length.

**Asexual morph** on the natural substrate not seen.

**Specimens examined:** **French West Indies:** Martinique: Case-Pilote, Morne Rose, mesophilic rainforest, on a dead corticated branch ca. 3 cm diam, 8 Aug. 2013, leg. J. Fournier, MJF 13086 (LIP); Les Anses-d’Arlet, track to Morne Salomon, coastal xerophilic forest, on a dead corticated branch ca. 4 cm diam, 5 Aug. 2016, leg. J. Fournier, MJF 16125 (LIP).

**Known distribution:** **Brazil** (Ju **et al.**, 1998), Martinique (this paper).

**Discussion:** The current concept of *Biscogniauxia capnodes* results from the segregation of three varieties from the typical variety based on ascospore morphology (Ju **et al.**, 1998). *B. capnodes* var. *theissenii* is similar to *B. capnodes* in having entirely carbonaceous applanate stromata with perithecia opening separately through punctate ostioles and non-appended ellipsoid-equilateral ascospores but was segregated from typical *B. capnodes* on account of its light brown and more narrowly ellipsoid ascospores. The holotype of *B. capnodes var. theissenii* is a collection from Brazil by Theissen (1907) — as *Nummularia theissenii* Syd. & P. Syd. —, featuring ascospores 9.5–13.5 × 4.5–5 μm, and no other material of this taxon is cited by Ju **et al.** (1998). Our collections from Martinique are referred to this taxon based on their overall similarity with *B. capnodes* coupled with deviating light brown ascospores averaging 9.6 × 4.7 μm, characterizing the variety *theissenii*. However, though they fit in the size range of 9.5–13.5 × 4.5–5 μm given by Ju **et al.** (1998), ascospores dimensions of the two studied specimens MJF 13086 and MJF 16125 appear fairly variable, respectively 8.5–9.8 × 4–4.6 μm and 9.5–10.9 × 4.6–5.6 μm. A better understanding of this taxon concept including its natural variations in ascospore dimensions should await a wider sampling.

Small light brown equilateral ascospores without a cellular applanate or short-cylindrical, frequently laterally and basally flattened, 0.5–0.85 mm high × 0.25–0.5 mm wide, opening centrally or laterally through individual ostioles, two adjacent perithecia rarely sharing a common ostiole. **Ostioles** usually deeply umbilicate, inconspicuous, 60–80 μm diam, mostly evenly distributed, often plugged with greyish substance.


**Stromata** planate-pulvinate, orbicular to irregularly ellipsoid-lobed, 7–48 mm long × 6–20 mm wide × 0.8–1.35 mm thick, often coalescent into elongate compound stromata to 100 mm long, with usually fairly abrupt margins; outer dehiscing layer dull blackish grey; present on immature stromata, occasionally persistent on mature stromata; mature surface grey to dark greyish brown or blackish, matt, slightly uneven, carbonaceous beneath surface and between perithecia, tissue beneath perithecia 0.04–0.2 mm thick, carbonaceous, underlying bark tissue dark brown. **Perithecium** tubular or short-cylindrical, frequently laterally and basally flattened, 0.5–0.85 mm high × 0.25–0.5 mm wide, opening centrally or laterally through individual ostioles, two adjacent perithecia rarely sharing a common ostiole. **Ostioles** usually deeply umbilicate, inconspicuous, 60–80 μm diam, mostly evenly distributed, often plugged with greyish substance.

**Asci**, cylindrical, with 8 obliquely uniseriate ascospores, short-stipitate, the spore-bearing parts 81–87 × 8–9 μm, the stipes 16–30 μm long, with apical apparatus 1.7–2.3 × 3–3.5 μm (Me = 2 × 3.2 μm; N = 20), disoid, at times slightly attenuated at base, bluing in Melzer’s reagent. **Paraphyses** sparse, hyphal, unbranched, thin-walled, septate, 1–2 μm wide, tapering above asci; allospores abundant, non-septate, contorted, filled with refractive content not stained in blue Pelikan® ink, 2.5–3.5 μm wide at base, gradually tapering to 0.5–1.8 μm above asci, giving to the perithecial content a slightly sticky consistency. **Ascospores** (9.9–10.3–11.9(–12.5) × (6.1–)6.5–7.7(–8.1) μm, Q = (1.3–)1.4–1.7(–1.8), N = 60 (Me = 11.1 × 7.2 μm; Qe = 1.6), one-celled, ellipsoid strongly inequilateral with unequally pinched ends, the lower end usually more strongly pinched than the upper one, dark brown to blackish brown, smooth-walled, with an inconspicuous, unilateral, straight germ slit spore-length or slightly less, on the convex side.

**Asexual morph** on the natural substrate not seen. Asexual morph in culture on OA periconiella-like, based on material from Taiwan (Ju **et al.**, 1998).

**Specimens examined:** **French West Indies:** Martinique: Case-Pilote, Fond Boucher, xero- to mesophilic forest, on a dead corticated branch, 25 Aug. 2010, leg. J. Fournier, MJF 10104 (LIP); ibid., 17 Aug. 2013, MJF 13271 (LIP); MJF 13276 (LIP); MJF 13298 (LIP); Case-Pilote, Morne Rose, mesophilic rainforest, on a dead corticated branch, 8 Aug. 2013, leg. J. Fournier, MJF 13065 (LIP); MJF 13066 (LIP); MJF 13075 (LIP); MJF 13077 (LIP); MJF 13079 (LIP); MJF 13080 (LIP); ibid., 14 Jun. 2015, leg. J. Fournier, MJF 15065 (LIP); MJF 15067 (LIP); MJF 15073 (LIP); MJF 15076 (LIP); La Trinité, Pointe Rouge, xero- to mesophilic forest, on a dead corticated branch, 1 Aug. 2016, leg. J. Fournier, MJF 16028–2 (LIP); Schoelcher, Fond Lahaye, banks of Fond Lahaye River, mesophilic rainforest, on a dead corticated branch, 12 Aug. 2013, leg. J. Fournier, MJF 13155 (LIP); Schoelcher, Rivière Duplos, mesophilic rainforest, on a dead corticated branch, 4 Dec. 2005, leg. C. Lechat, CLL 5535 (LIP).

**Known distribution:** Pantropical: Cameroon (Van der Gucht **& Whalley**, 1992), French Guiana (Ju **et al.**, 1998), Martinique (this paper), Nigeria (Whalley **et al.**, 1988), Papua New Guinea (Van der Gucht, 1992), Taiwan, USA (Hawaiian Islands) (Ju **et al.**, 1998).

**Discussion:** As stated by Ju **et al.** (1998), *Biscogniauxia citriformis* is a “highly distinctive taxon”, easily recognisable by its rather thick stromata with a grey to dark grey surface and umbilicate ostioles, strongly inequilateral blackish brown ascospores 10–12 × 6–8 μm with pinched ends and abundant allospores. The two latter characters are diagnostic, though allospores were not mentioned in the original description (Whalley **et al.**, 1988). The most resembling taxon is *B. citriformis* var. *macrospora* which is distinguished by its significantly larger ascospores 17.7–19.5 × 8.3–9.8 μm (Van der Gucht **& Whalley**, 1992; Van der Gucht, 1992; Ju **et al.**, 1998; this paper).

Two deviating collections (Plate 8) must be mentioned: in CLL 5535, the stromatal surface is white, and the stromata of MJF 13079 are distinctly erumpent from dead decorticated wood, whereas *Biscogniauxia* is typically a bark-inhabiting genus. As both collections show all the other typical features of *B. citriformis*, they are referred to this taxon.

Based on its records in literature, *B. citriformis* appears to be widespread in tropics and our 17 records of this species show that it is one of the most common species of *Biscogniauxia* in Martinique. However, it should be noted that most of the collections come from the same localities, suggesting a strong preference for sun-exposed places in mesophilic forests.
Plate 6 – Biscogniauxia capnodes var. theissenii

MJF 13086. A-C: Variously shaped stromata on host surface; D, E: Stromata in vertical section (broken) showing the carbonaceous tissue encasing the tubular to short-cylindrical perithecia; F: Stromatal surface in close-up showing the umbilicate to slightly punctate ostioles plugged with white substance; G, H: Mature and immature asci, in 1% SDS and Melzer’s reagent respectively; I: Ascal apical apparatus, in Melzer’s reagent; J: Ascospore showing a long germ slit, in 1% SDS; K: Ascospores in 1% SDS, some showing a long germ slit. Scale bars: A = 10 mm; B, C = 5 mm; D-F = 0.5 mm; G, H = 20 μm; I, J = 5 μm; K = 10 μm.
Plate 7 – Biscogniauxia citriformis

A, B, D: MJF 15076; C, E, H: MJF 15065; F, G, I: MJF 15067. A: Ellipsoid-lobed stromata on host surface, with remnants of the darker outer dehiscing layer on stromatal surface (arrows); B: Orbicular stroma devoid of outer layer; C, D: Stromatal surface in close-up showing more or less conspicuous umbilicate ostioles; E, H: Stromata in vertical section (broken) showing the carbonaceous tissue encasing the short-cylindrical to tubular perithecia; F: Mature asci in 1% SDS, associated with thin-walled paraphyses (white arrow) and allophyses with refractive content (red arrow); G: Ascospores in side view in the ascus, in 1% SDS; I: Ascal tips in Melzer’s reagent, showing the amyloid apical apparatus and immature ascospores, one in dorsal view with the germ slit visible (arrow). Scale bars: A = 10 mm; B = 2 mm; C-E, H = 0.5 mm; F = 20 μm; G = 10 μm; I = 5 μm.

Stromata applanate, orbicular to irregularly ellipsoid-lobed, 3–12 mm long × 3–10 mm wide x 0.7–0.9 mm thick, separate or often coalescent into elongate compound stromata to 40 mm long × 15 mm wide, with sloping margins lacking remnants of the outer dehiscing layer; surface black, matt, even, carbonaceous beneath surface and between perithecia, tissue beneath perithecia 0.04–0.05 mm thick, carbonaceous, underlying bark tissue blackish brown. **Perithecia** tubular or short-cylindrical, frequently laterally and basally flattened, 0.5–0.7 mm high × 0.2–0.35 mm wide, opening centrally or laterally through individual ostioles, two adjacent perithecia rarely sharing a common ostiole. **Ostioles** punctate, 40–60 μm diam, evenly distributed, plugged with white substance.

**Asci** cylindrical, with (6–)8 overlapping uniseriate ascospores, short-stipitate to subsessile, the spore-bearing parts 120–135 × 10–11 μm, the stipes 8–16 μm long, with apical apparatus 3.4–4.2 × 4.8–5.4 μm (Me = 3.8 × 5.1 μm; N = 16), short-cylindrical, apically flared, bluing in Melzer’s reagent. **Paraphyses** hyphal, unbranched, thin-walled, septate, either 1–2 μm wide, sparsely guttulate, embedded in mucilage, or 4–9 μm wide, with granular refractive material, less homogeneous than in typical allopheges, giving to the perithecial content a slightly sticky consistency. **Ascospores** (17–)17.7–19.5(–20.4) × (8–)8.3–9.8(–10.4) μm, Q = (1.8–)1.9–2.3(–2.4), N = 60 (Me = 18.7 × 9 μm; Qe = 2.1), one-celled, ellipsoid strongly inequilateral with unequally pinched ends, dark brown to blackish brown, smooth-walled, with an inconspicuous, unilaterial, straight germ slit on the most convex side of ascospores in the few cases where we could detected it. Other characters deviating from the typical variety are the slightly thinner stromata with a black vs. grey surface and punctate vs. deeply umbilicate ostioles. **B. citriformis var. macrospora** is apparently much rarer than **B. citriformis** in Martinique and its variability should be assessed based on a wider sampling.


Stromata applanate-pulvinate, orbicular to irregularly ellipsoid-lobed, 4–32 mm long × 4–18 mm wide x 0.7–0.85 mm thick, somewhat coalescent into longer compound stromata, with sloping margins and usually lacking remnants of the outer dehiscing layer at maturity; mature surface olivaceous brown to dark grey with a faint brown tinge on young stromata, matt, slightly uneven, carbonaceous beneath surface and between perithecia, tissue beneath perithecia 0.04–0.2 mm thick, carbonaceous, underlying bark tissue weakly pigmented. **Perithecia** obvoid to tubular, frequently laterally and basally flattened, 0.6–0.65 mm high × 0.25–0.4 mm wide, opening centrally or laterally through individual ostioles, two adjacent perithecia rarely sharing a common ostiole. **Ostioles** slightly papillate, apically obtuse or truncate, black, slightly shiny, at times punctate with a low rim, 50–75 μm diam, evenly distributed, often plugged with greyish substance.

**Asci** cylindrical, with 8 obliquely uniseriate ascospores, short-stipitate to subsessile, the spore-bearing parts 100–115 × 9–10 μm, the stipes 9–12 μm long, with apical apparatus 2.3–3.2 × 3.8–4.5 μm (Me = 2.7 × 4.1 μm; N = 20), short-cylindrical, slightly trapezoid, bluing in Melzer’s reagent. **Paraphyses** sparse, hyphal, unbranched, thin-walled, septate, 4–6 μm wide, tapering above asc. **Ascospores** (12.2–)12.8–15.2(–17.5) × (5.7–)6.2–7.9(–8.2) μm, not including appendage, Q = (1.6–)1.7–2.3(–2.6), N = 120 (Me = 14 × 7.1 μm; Qe = 2), dark brown to blackish brown, ellipsoid-inequilateral, slightly laterally flattened, with broadly rounded and frequently slightly pinched upper end and an obliquely truncate lower end, bearing a hyaline, thick-walled broadly conical, obtusely-ended cellular appendage 2–3.5 μm long × 3–4.5 μm wide (Me = 2.6 × 3.9 μm, N = 25), collapsing over time, especially on discharged ascospores; smooth-walled, with a fairly conspicuous, unilateral, straight germ slit almost spor-Length on the most convex side.

**Asexual morph** on the natural substrate not seen. Asexual morph in culture on OA sporothrix-like to nodulisporium-like, based on material from USA (Rogers, 1966).
Plate 9 – Biscogniauxia citriformis var. macrospora

MJF 13088. A: Variously lobed confluent stromata on host surface; B: Stromatal surface in close-up showing punctate ostioles plugged with white substance; C, D: Lobed and orbicular stromata in close-up; E: Immature and mature asci in diluted blue Pelikan® ink; F: Ascal tips in Melzer’s reagent, showing the amyloid apical apparatus; G: Stroma in vertical section (broken) showing the carbonaceous tissue encasing the short-cylindrical perithecia; H: Hamathecium composed of narrow thin-walled paraphyses embedded in mucilage (white arrow) and wide paraphyses containing granular refractive material (red arrow), in black Pelikan® ink; I: Mature ascospore in side view showing the pinched ends, in 1% SDS; J: Immature ascospore in dorsal view showing a germ slit (arrow), in black Pelikan® ink. Scale bars: A = 10 mm; B, G = 0.5 mm; C = 5 mm; D = 2 mm; E, H = 50 μm; F, I, J = 10 μm.
Plate 10 – Biscogniauxia grenadensis

A, I-M: MJF 10213; B, E: MJF 10225; C, D, F-H: MJF 10230. A-B: Variously shaped ellipsoid-lobed mature stromata on host surface; C: Young stroma with white substance lining the margins; D, E: Stromatal surface in close-up showing papillate truncate ostioles (D) or punctate ostioles (E); F, G: Mature and immature asci associated with thin-walled paraphyses, in diluted blue Pelikan® ink, showing several ascospores with upper end pinched; H: Ascospore in side view showing a pinched upper end (arrow) and a collapsed cellular appendage at lower end; I: Stroma in vertical section (broken) showing the carbonaceous tissue encasing the tubular perithecia; J: Ascospore in dorso-lateral view showing a germ slit, in 1% SDS; K, M: Ascospores in side view showing the obliquely truncate lower end bearing a cellular appendage and a pinched upper end (K), in 1% SDS; L: Ascal tips in Melzer's reagent, showing the amyloid apical apparati and an immature ascospore. Scale bars: A, B = 10 mm; C = 2 mm; D, E, I = 0.5 mm; F, G = 50 μm; H, J-M = 10 μm.

Known distribution: Primarily Neotropical: Costa Rica (MILLER, 1961), Jamaica, Grenada (Ju et al., 1998), Martinique (this paper), México (San Martín & Rogers, 1993), USA (Washington state) (ROGERS, 1966).

Discussion: The collections presented above conform well to Biscogniauxia grenadensis in having inequilateral appended ascospores averaging 14 × 7.1 μm, with frequently pinched upper ends and a conspicuous germ slit spore-length. The three most resembling species with appended ascospores occurring in Martiniqne are B. breviappendiculata (this paper), B. martinicensis (this paper) and B. philippinensis. B. grenadensis primarily differs from the former by its larger and strongly inequilateral ascospores with a persistent and conspicuous cellular appendage; from B. martinicensis by larger ascospores with a ratio L/w = 2 vs. 1.3; from B. philippinensis by smaller ascospores 13.1–15.2 × 6.2–7.9 μm vs. 20–24.5 × 10.6–13.6 μm. None of these species possesses ascospores with pinched upper end which might be seen as the "signature" of B. grenadensis.

We describe the ostioles of our collections as mostly papillate-truncate, which differs from the description as "plane, rarely with raised margin" by MILLER (1961) and "at the same level as or lower than stomatal surface, with openings punctate, usually surrounded by slightly raised rim" by Ju et al. (1998). As we also noticed the presence of punctate ostioles surrounded with a low rim in our collections, we assume the morphology of ostioles in this species is variable and cannot be regarded as discriminant.

Variety macrosora J.H. Mill. was described by MILLER (1961) for material from Jamaica based on slightly larger asci and ascospores, the latter 13–18 × 7–10 μm, a size range currently accepted for B. grenadensis by Ju et al. (1998) and Ju & Rogers (2001) who did not recognize this variety. The wide ascospore size range recorded on the five examined collections from Martinique supports this decision.

Biscogniauxia martinicensis J. Fourn. & Lechat, sp. nov. – Myco-Bank MB820803. Plates 11–12. Table 2.

Diagnosis: Differs from all Biscogniauxia taxa featuring appended blackish brown ascospores by smaller, broadly ellipsoid slightly inequilateral ascospores averaging 11.2 × 8.5 μm, with a conspicuous and persistent cellular appendage and a conspicuous straight germ slit almost spore-length.


Etymology: Derived from Martinique, the Caribbean island in which the species was repeatedly collected.

Stromata applanate, orbicular to irregularly lobed, 3–32 mm long × 2–10 mm wide × 0.35–0.5 mm thick, with sloping margins, frequently confluent; outer dehiscing layer present on immature stroma, reddish brown, brittle, remaining at margin but barely distinguished from the surrounding bark tissue; mature surface dull greyish brown to blackish grey, carbonaceous beneath surface and between perithecia, tissue beneath perithecia 0.3–0.4 mm thick, carbonaceous, underlying bark tissue blackened. Perithecia short-cylindrical to obovoid or flask-shaped, the base flattened, frequently laterally flattened, 0.2–0.35 mm high × 0.15–0.25 mm wide, opening centrally or laterally through individual ostioles, two adjacent perithecia rarely sharing a common ostiole. Ostioles umbilicate or punctate with a slightly to conspicuously raised rim, plugged with white substance or 40–50 μm diam, often surrounded by a darker halo, evenly distributed or in small clusters.

Asci cylindrical, with (6–)8 obliquely uniseriate ascospores, short-stipitate to subsessile, the spore-bearing parts 92–118 × 9–10 μm, the stipes 7–22 μm long, with apical apparatus 2.9–3.9 × 4.3–5.4 μm (Me = 3.5 × 4.9 μm; N = 20), short-cylindrical to trapezoid, bluing in Melzer’s reagent. Paraphyses sparse, hyphal, unbranched, thin-walled, septate, 4–5 μm wide at base, tapering above asci. Ascospores (9–19.5–12.8–(13.3) × (6.6–7.4–9.8–(10.4) μm, not including appendage, Q = (1.1–)1.2–1.4–(1.6), N = 300 (Me = 11.2 × 8.5 μm; Qe = 1.3), dark brown to blackish brown, broadly ellipsoid slightly inequilateral to almost equal, with broadly rounded upper end and obliquely truncate lower end bearing a hyaline, thick-walled hemispherical to conical cellular appendage 2–3.4 μm long × 4.5–5.5 μm wide (Me = 2.6 × 4.8 μm, N = 60), persistent at maturity, even on discharged ascospores; smooth-walled, with a conspicuous, unilateral, straight germ slit spore-length to almost spore-length on the most convex side.

Asexual morph on the natural substrate: Conidiophores arising in loose tufts, whitish, originating from the outer layer of immature stromata prior to dehiscence; conidiophores upright, with a straight, basally brown, septate axis, 120–160 μm high × 4–6 μm wide at base, roughened, apically yellowish to subhyaline, branching; conidiogenous structure virgiliella-like to nodulisporium-like, with conidiogenous cells 10–18 × 2.5–3.5 μm, finely roughened; conidia 4.5–7.2 × 2.5–2.8 μm, subhyaline, smooth, narrowly ellipsoid to fusiform.

Other specimens examined (paratypes): FRENCH WEST INDIES: MARTINIQUE: Case-Pilote, Savane Saint-Cyr, track to Plateau Concorde, hygrophilic rainforest, on a dead corticated branch 2.5 cm diam, 25 Aug. 2007, leg. J. Fournier, MUF 07093 (LIP); Fort-de-France, Abalon, trail to Plateau Michel, ca. 350 m, hygrophilic rainforest, on a dead corticated branchlet 2 cm diam, 15 Aug. 2013, leg. J. Fournier, MUF 13246 (LIP); ibid., on a dead corticated branchlet 1.5 cm diam, 5 Jun. 2014, leg. J. Fournier, MUF 14039 (LIP); ibid., on a dead corticated branchlet 1.5 cm diam, 7 Aug. 2016, leg. J. Fournier, MUF 16162 (LIP).

Known distribution: Martinique.

Discussion: Based on the study of five collections from Martiniqne, Biscogniauxia martinicensis is characterized by thin, apllanate, entirely carbonaceous stromata with dark grey surface and punctate ostioles, combined with two-celled, almost equilaterial blackish brown ascospores averaging 11.2 × 8.5 μm with a conspicuous, thick-walled, basal cellular appendage and a conspicuous straight germ slit spore-length. This combination of characters distinguishes it from the most resembling species B. breviappendiculata and B. grenadensis. The former primarily differs from B. martinicensis by strictly equilaterial and more narrowly ellipsoid ascospores (Qe = 1.7 vs. 1.3) bearing a much smaller, thin-walled and often collapsed cellular appendage. Ascospores of B. grenadensis differ from those of B. martinicensis in being larger and more narrowly ellipsoid on average (Me = 14 × 7.1 μm, L/w = 2 vs. 11.2 × 8.5 μm, L/w = 1.3) and in being more strongly inequilateral and frequently pinched at upper end.

Ascospores of the widespread, pantropical B. uninipulata strongly differ in being paler brown, more narrowly ellipsoid and frequently inequilateral and in having a germ slit on either side (Ju et al., 1998; this paper). Moreover, their appendages are thin-walled and often collapsed (this paper).

A comparison with B. uninipulata var. indica (Sacc.) Y.-M. Ju & J.D. Rogers, known from a single collection in Singapore (Ju et al., 1998), might likewise be considered because of its appended

Ascomycete.org 83
Plate 11 – Biscogniauxia martinicensis

A, B, E, F, H, I: MJF 13323 holotype; C: MJF 13246; D: MJF 16162; G, J: MJF 14039. A: Immature stroma with ruptured dehiscing outer layer (arrows); B-F: Variously shaped stromata erumpent from bark; G: Stroma in vertical section showing the thick carbonaceous subsurface and the carbonaceous tissue encasing the perithecia; H-J: Stromatal surface in close-up showing punctate ostioles without (H) or with (I) raised rims, or umbilicate ostioles (J). Scale bars: A, B, E = 2 mm; C, D, F = 10 mm; G-J = 0.5 mm.
Plate 12 – Biscogniauxia martinicensis

A, D: MJF 13323, holotype; B: MJF 07093; C, H: MJF 14039; E-G: MJF 16162. A: Immature and mature asci, in black Pelikan® ink; B: Ascospores in 1 % SDS; three of them in dorsal view showing a germ slit; C: Ascal apical apparati, in Melzer’s reagent; D: Mature ascospore in side view; E: Outer layer of an immature stroma on bark surface prior to dehiscence, bearing white tufts of the asexual morph (arrow); F: Close-up of the asexual morph colony on immature stroma; G: Conidiophore of the asexual morph, bearing the apical virgariella- to nodulisporium-like branching of conidiogenous cells, with some detached conidia, in 1% SDS; H: Immature medium brown ascospores in side and dorsal views, in 1% SDS. Scale bars: A, G = 50 μm; B-D, H = 10 μm; E = 1 mm; F = 0.2 mm.
ascospores of similar length 10–12 × 6–7.5 μm. Ascospores of *B. uniapiculata var. indica* differ from those of *B. martincensis* in being more narrowly ellipsoid and in having a less than spore-length germ slit.

*Biscogniauxia nigropapillata* J. Fourn. & Lechat, sp. nov. – Myco-Bank MB820804. Plate 13. Table 3.

**Diagnosis:** Differs from all *Biscogniauxia* taxa featuring papillate ostioles by medium brown, almost equilateral non-appended ascospores averaging 9 × 3.8 μm, with a germ slit most often much less than spore-length.


**Etymology:** From Latin *niger* = black and *papilla* = nipple, for the shiny black papillate ostioles contrasting against the dull olivaceous brown stromatal surface.

**Stromata** planate, orbicular, ellipsoid-lobed, ellipsoid-elongate or widely effused, 3–110 mm long × 4–44 mm wide × 0.7–1.4 mm thick; remnants of the dark olivaceous brown to blackish outer detritus layer occasionally present at margins; mature surface dull olivaceous brown, carbonaceous beneath surface and between perithecia, tissue beneath perithecia 0.15–0.2 mm thick, composed of blackened bark tissue, not carbonaceous. **Perithecia** tubular to long-tubular, frequently laterally flattened, 0.6–1.2 mm high × 0.17–0.42 mm wide, opening centrally or laterally through individual ostioles, two adjacent perithecia rarely sharing a common ostiole. **Ostioles** papillate, shiny black, evenly distributed or in small clusters contrasting against the dull olivaceous brown stromatal surface.

**Asci** cylindrical with (4–6–)8 obliquely uniseriate ascospores, sub-sessile, the spore-bearing parts 60–77 × 5–6 μm, fragile and easily ruptured at maturity, the stipes 7–10 μm long, with apical apparatus 1.4–1.9 × 2–2.6 μm (Me = 1.7 × 2.2 μm; N = 20), trapezoid, bluing in Melzer’s reagent. **Paraphyses** copious, hyphal, unbranched, thinned, septate, 4–5 μm wide at base, tapering above asci.

**Ascospores** (7.3–)8.1–10.4–(11) × (3–)3.4–4.3–(4.8) μm, Q = (1.8–)2.1–2.6–(3), N = 300 (Me = 9.1 × 3.9 μm; Qe = 2.3), one-celled, narrowly ellipsoid almost equilateral with narrowly rounded ends, medium brown, smooth-walled, with a blurred unilateral straight germ slit most often much less than spore-length. A further diagnostic difference is the presence of punctate ostioles vs. papillate in *Biscogniauxia nigropapillata* in having a conspicuous germ slit spore-length. A further diagnostic difference is the presence of punctate ostioles vs. papillate in *Biscogniauxia nigropapillata* in having a conspicuous germ slit spore-length. A further diagnostic difference is the presence of punctate ostioles vs. papillate in *Biscogniauxia nigropapillata* in having a conspicuous germ slit spore-length.

**Discussion:** This *Biscogniauxia* is characterized by applanate, entirely carbonaceous stromata with an olivaceous brown surface and conspicuous shiny black papillate ostioles. Its one-celled almost equilateral medium brown ascospores averaging less than 10 μm long with a blurred short germ slit distinguish it from known species with papillate ostioles (Ju et al., 1998; Ju & Rogers, 2001).

Three species with papillate ostioles and one-celled light brown almost equilateral ascospores ranging from 7.5 to 13 μm long must be compared with our new species.

*Biscogniauxia africana* Y.-M. Ju & J.D. Rogers, known from Uganda, is readily distinguished from *B. nigropapillata* by its raised-discoid stromata and larger ascospores 10–13 × 4.5–5.5 μm with a germ slit spore-length.

*Biscogniauxia arima* San Martín Y.-M., Ju & J.D. Rogers, known from Mexico, features woody stromata with carbonaceous tissue restricted to the subsurface, obovoid perithecia 0.5–0.6 mm high and ascospores with broadly rounded ends 7.5–9 × 3–4 μm that lack a germ slit. This combination of characters clearly sets it apart from *B. nigropapillata*.

*Biscogniauxia communapertura* Y.-M. Ju & J.D. Rogers, known from Brazil, features ascospores 8–11.5 × 4.5–6 μm resembling those of *B. nigropapillata* in having a short germ slit but its stromata strongly differ in having perithecia arranged in rosettes sharing a common ostiolar opening, making ostiolar papillae widely spaced on stromatal surface. Its broadly ellipsoid ascospores with broadly rounded ends provide a further discriminant character from *B. nigropapillata*.

San Martín & Rogers (1993) reported an undescribed species from México (San Martín 725), featuring like *B. nigropapillata* papillate ostioles, a small and trapezoid apical apparatus and narrowly ellipsoid ascospores with a germ slit less than spore-length.

Besides these similarities, the Mexican *Biscogniauxia*, which was not mentioned in Ju et al. monograph (1998), differs in having significantly larger and inequilateral to navicular ascospores 13–16 × 5–5.5 μm with the germ slit on the flattened side. This latter character is most unusual amongst the *Biscogniauxia* taxa with inequilateral ascospores and sets this collection clearly apart from its relatives.

The most resembling species regarding ascospore morphology and dimensions is *B. capnodes var. theissenii* “with light brown, narrowly ellipsoid ascospores 9.5–13.5 × 4.5–5 μm” (Ju et al., 1998). However, ascospores of this species differ from those of *B. nigropapillata* in having a conspicuous germ slit spore-length. A further diagnostic difference is the presence of punctate ostioles vs. papillate in *B. nigropapillata* (also see B. capnodes var. theissenii in this paper).

The relatively narrow variation range of ascospore dimensions within five collections of *B. nigropapillata* is summarized in Table 3.
Plate 13 – *Biscogniauxia nigropapillata*

A, C–I: CLL 5254 Holotype; B: MJF 13223. A: Widely effused confluent stromata on host surface; B: Small orbicular stroma; C: Cluster of shiny black papillate ostioles contrasting against the olivaceous brown stromatal surface; D, E: Stromata in vertical section (broken) showing the carbonaceous tissue encasing the long-tubular perithecia; F: Mature and immature asci in Melzer’s reagent; G: Ascsporal apical apparati in Melzer’s reagent; H: Ascospores mounted in PVA-lactophenol (laterally swollen), three of them showing a short germ slit; I: Ascospores in 1% SDS. Scale bars: A = 10 mm; B = 2 mm; C = 0.2 mm; D, E = 0.5 mm; F, I = 20 μm; G, H = 10 μm.
Table 3 – Ascospore dimensions in five collections of *B. nigropapillata* showing the intraspecific variations.

<table>
<thead>
<tr>
<th>Collections number</th>
<th>Ascospore measurements with extreme values in parentheses</th>
<th>Q = quotient l/w N = number of measurements</th>
<th>Mean values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLL 5098</td>
<td>(8.3–)18.8–10.4–(11) × (3–)3.6–4.3–(4) µm</td>
<td>(1.9–)2.2–2.7–(3), N = 60</td>
<td>Me = 9.4 × 3.9 µm, Qe = 2.4</td>
</tr>
<tr>
<td>CLL 5100</td>
<td>(7.8–)8.5–9.8–(10.4) × (3.1–)3.5–4.1–(4) µm</td>
<td>(1.9–)2.1–2.6–(2.9), N = 60</td>
<td>Me = 9.1 × 3.9 µm, Qe = 2.4</td>
</tr>
<tr>
<td>CLL 5254</td>
<td>(7.7.8–)9.6–(10.2) × (3.1–)3.5–4.3–(4.4) µm</td>
<td>(1.8–)2.1–2.6–(2.9), N = 60</td>
<td>Me = 9 × 3.9 µm, Qe = 2.3</td>
</tr>
<tr>
<td>MJF 13223</td>
<td>(7.3–)8.1–9.4–(10) × (3.2–)3.4–3.9–(4.2) µm</td>
<td>(1.8–)2.1–2.6–(2.9), N = 60</td>
<td>Me = 8.7 × 3.7 µm, Qe = 2.4</td>
</tr>
<tr>
<td>MJF 16163</td>
<td>(8.2–)8.4–10.4–(10.4) × (3.6–)3.7–4.3–(4.8) µm</td>
<td>(1.8–)2.2–2.6–(2.7), N = 60</td>
<td>Me = 9.1 × 4.1 µm, Qe = 2.3</td>
</tr>
<tr>
<td>Cumulated values</td>
<td>(7.3–)8.1–10.4–(11) × (3–)3.4–3.4–(4.8) µm</td>
<td>(1.8–)2.1–2.6–(3), N = 300</td>
<td>Me = 9.1 × 3.9 µm, Qe = 2.3</td>
</tr>
</tbody>
</table>


Stromata applanate-pulvinate, orbicular to irregularly ellipsoid-lobed, 3–35 mm long × 3–22 mm wide × (0.9–)1.2–1.8 mm thick, coalescent into longer compound stromata to 70 mm long, with sloping margins and reddish brown remnants of the outer dehiscing layer occasionally present; mature surface dark grey to blackish grey, matt; smooth, carbonaceous beneath surface and between perithecia, tissue beneath perithecia inconspicuous, underlying bark tissue weakly pigmented. Perithecia long-tubular, laterally flattened, 0.85–1.5 mm high × 0.25–0.35 mm wide, opening centrally or laterally through individual ostioles. Ostioles umbilicate to finely punctate with a low rim, evenly distributed, plugged with white substance, appearing as whitish discs 60–80 µm diam.

Asci cylindrical, with 8 obliquely uniseriate ascospores, short-stipitate to subsessile, the spore-bearing parts 146–175 × 12.5–14 µm, the stipes 8–15 µm long, with apical apparatus 3.7–4.8 × 5–5.8 µm (Me = 4.4 × 5.4 µm; N = 25), short-cylindrical to trapezoid, bluing in Melzer’s reagent. Paraphyses in bundles, hyphal, unbranched, thin-walled, septate, 4–6 µm wide, tapering to 2–2.5 µm above ascu.

Ascospores (18.3–)19.7–24.5–(26.7) × (10.1–)10.6–13.6–(14.1) µm, not including appendage, Q = (1.5–)1.6–2.1–(2.4), N = 420 (Me = 22 × 11.9 µm; Qe = 1.85), dark brown to blackish brown, ellipsoid-inquilateral with most often broadly rounded upper end and an obliquely truncate lower end, bearing a hyaline to yellowish, thick-walled, hemispherical to broadly conical, obtusely-ended cellular appendage 2.8–4 µm long × 5–6 µm wide (Me = 3.4 × 5.5 µm, N = 60), rarely collapsing over time, at times partially detached at periphery; smooth-walled, with either a thin inconspicuous, unilaeral, straight germ slit almost spore-length or a pale, blurred band ca. 3 µm wide, both on the most convex side.

Asexual morph on the natural substrate not seen. Asexual morph in culture on OA periconiella-like, based on material from Taiwan (Ju et al., 1998).


Known distribution: Pantropical: Guyana (Ju et al., 1998), Martinique (this paper), México, Philippines, Taiwan (Ju et al., 1998).

Discussion: *Biscogniauxia philippinensis* is well characterized by thick, usually slightly pulvinate stromata with long-tubular perithecia and finely punctate ostioles. Its ascospores average more than 20 µm long, being dark brown, inequilateral bearing a conspicuous and persistent cellular appendage, and, when observed in dorsal view, frequently showing a wide paler band extending spore-length (Ju et al., 1998). Our numerous collections from Martinique conform well to *B. philippinensis* but they deviate from the concept of this species delimited by Ju et al. (1998) in featuring slightly shorter ascospores 20–24.5 × 10.6–13.6 µm vs. 22–27 × 11.5–13 µm, slightly shorter asci and smaller apical apparatus 2.8–4 × 5–6 µm vs. 6–7.5 × 5.5–6 µm. In their dichotomous keys to *Biscogniauxia*, Ju et al. (1998) and Ju & Rogers (2001) regard as diagnostic the presence of the wide paler band on the dorsal side of ascospores in *B. philippinensis* and its variety *microspora* Y.-M. Ju & J.D. Rogers. Since this character could be observed in all the collections studied, we refer them to *B. philippinensis* and we assign these minor morphological deviations to intraspecific variations.

The wide paler band on ascospores is regarded as a germ silt by Ju et al. (1998), which is very likely, but we also observed less frequently the presence of a thin, inconspicuous but more typical germ silt, which suggests the occurrence of two different types of germ slits on ascospores of *B. philippinensis* which may vary with conditions of observations.

Other *Biscogniauxia* taxa from Martinique featuring appended ascospores are *B. breviappendiculata, B. grenadensis, B. microspora, B. uniaiplicata and B. viscosicentra*; they all have significantly smaller ascospores and thus are easily distinguished from *B. philippinensis*.

Because of the slightly shorter ascospores of our material from Martinique, we considered a comparison with *B. philippinensis* var. *microspora*, which was segregated based on smaller ascospores 13.5–19 × 8–10 µm (Ju et al., 1998). As there is no overlap between the size range of our collections (Table 4) and that of *B. philippinensis* var. *microspora*, we ruled out this possibility.

During this survey, *B. philippinensis*, as most of *Biscogniauxia* taxa that we collected, appeared to show a strong preference for rather dry or sun-exposed locations and had never been encountered in hygrophilic rainforests.
Plate 14 – Biscogniauxia philippinensis

A, D-H, K: MJF 13144; B, I, J: MJF 10187; C, L: MJF 13161. A-C: Orbicular to variously ellipsoid-lobed mature stromata on host surface; D: Stroma in vertical section (broken) showing the carbonaceous tissue encasing the long-tubular perithecia; E: Stromatal surface in close-up showing the umbilicate to finely punctate ostioles plugged with white substance; F: Barely mature pulvinate stroma with reddish brown remnants of the outer dehiscing layer at margin (arrows); G: Mature and immature asci associated with bundles of thin-walled paraphyses, in black Pelikan® ink; H: Ascal tips in Melzer’s reagent, showing the amyloid apical apparatus and an immature ascospore; I: Ascospore in dorso-lateral view showing a thin germ slit (arrow), in 1% SDS; J: Ascospore in side view showing an unusually narrowly rounded upper end and a cellular appendage partly detached from the brown cell, in 1% SDS; K: Ascospore in dorsal view showing a germ slit as a wide paler band (arrow), in 1% SDS; L: Variously shaped mature ascospores, in 1% SDS. Scale bars: A-C = 10 mm; D = 1 mm; E = 0.2 mm; F = 2 mm; G = 50 μm; H-L = 10 μm.
**Biscogniauxia sinuosa** (Theiss.) Y.-M. Ju & J.D. Rogers *var. macrospora* J. Fourn. & Lechat, var. nov. – MycoBank MB820805. Plate 15.

**Diagnosis:** Differs from typical *B. sinuosa* by significantly larger ascospores averaging 38 × 12.8 μm vs. 28 × 8.8 μm.

**Holotype:** FRENCH WEST INDIES: MARTINIQUE: La Trinité, Tartane, Pointe Rouge, coastal meso- to xerophilic forest, on a recently dead corticated branch ca. 4 cm diam, 1 Aug. 2016, leg. J. Fournier, MJF 16072 (LIP).

**Etymology:** Prefix macro- from Greek μακρός = long, for the strikingly large ascospores.

**Stromata** applanate to slightly pulvinate, orbicular or ellipsoid, lobed, with sloping margins, 3–70 mm long × 2–40 mm wide × 0.8–1.1 mm thick; or coalescent into widely effused compound stromata to 160 mm long; remnants of the blackish grey outer dehiscing layer occasionally present at margins of young stromata; mature surface dull black, even, carbonaceous beneath surface and between perithecia, tissue beneath perithecia inconspicuous, dark tissue slightly blackened, not carbonaceous. **Perithecia** tubular, frequently centrally or laterally flattened, 0.7–0.9 mm high × 0.3–0.5 mm wide, opening centrally or laterally through individual ostioles. **Ostioles** punctate, 80–120 μm diam, plugged with white to yellowish substance, frequently surrounded by a low black rim, evenly distributed or in small clusters.

**Asci** cylindrical with (6–)8 obliquely uniseriate overlapping asci, short-stipitate, the spore-bearing parts 208–230 × 17–19.5 μm, the stipes 20–35 μm long, with apical apparatus 4–5.9 × 6.2–8 μm (Me = 4.9 ± 7.1 μm, N = 40), slightly trapezoidal, bluing in Melzer’s reagent, frequently paler blue at apex, the darker part only measured. **Paraphyses** copious, hyphal, unbranched, thin-walled, septate, 7–10 μm wide at base, tapering to 2 μm wide above asci. **Ascospores** (33.3–)34.5–40.8(–42) × (10.8–)11.5–14.1(–15.4) μm, Q = (2.4–)2.7–3.3(–3.6), N = 120 (Me = 38 × 12.8 μm; Qe = 3), one-celled, fusiform, slightly inequilateral with narrowly rounded to acute, frequently pinched ends, dark brown, ornamented with dark longitudinal ridges alternating with paler zones, best seen in PVA-lactophenol; germ slit not observed, possibly present but masked by the ridges.

**Asexual morph** on the natural substrate not seen.

**Other specimens examined (paratypes):** FRENCH WEST INDIES: MARTINIQUE: Le Saint-Esprit, Bois La Charles, mesophilic rainforest, on dead corticated branch, 24 Aug. 2004, leg. C. Lechat, CLL 2074 (LIP); *ibid.*, 30 Aug. 2010, leg. J. Fournier, MJF 10240 (LIP); MJF 10245 (LIP); MJF 10249 (LIP).

**Known distribution:** Martinique.

**Discussion:** Conspicuously ornamented ascospores are most unusual within *Xyliaceae* and thus provide a helpful discriminant character, especially in *Biscogniauxia* where only four taxa are known to possess such ascospores and must be compared with the taxon described above. Ascospores of *B. weldenii* (J.D. Rogers) Whalley & Laessae — known from Louisiana (USA) (ROGERS, 1977) — and its variety *micropora* (J.D. Rogers) Whalley & Laessae — known from Honduras and Venezuela (ROGERS, 1980) — are longitudinally striate in a way resembling that of our collections from Martinique in showing “light-colored stripes”. However, they differ from our new taxon in being smaller, respectively 25–28 × 9.5–10.5 μm and 18–21 × 8–10 μm. *Biscogniauxia reticulopora* Y.-M. Ju & J.D. Rogers, known from Thailand, is distinctive in having large unicellular ascospores 27–34 × 14–15.5 μm with shallow reticulate ornamentation on epispore, recalling that of the closely related genus *Camillea* Fr. (Ju et al., 1998). The coarsely, longitudinally ridged ascospores of the *Biscogniauxia* dealt with here cannot be confused with those of the above taxa but they strikingly resemble those of *B. sinuosa* (Theiss.) Y.-M. Ju & J.D. Rogers, based on material collected in Brazil by Rick and described by Theissen as *Nummularia sinuosa* (THEISSL, 1998). This material was first revised by MILLER (1961), who assigned it to *Hypoxylon*, as *H. sinuosum* (Theiss.) J.H. MILL. Both gave similar ascospores dimensions, respectively 28–35 × 9–11 μm and 28–35 × 9–12 μm, and both did not mention the ornamentation which, indeed, may be overlooked when darkly pigmented mature ascospores are observed under a weak illumination. Upon their revision of *Biscogniauxia*, Ju et al. (1998) recorded the ascospore size range from the type material as 26–30 × 7.5–10 μm and reported the presence of coarse longitudinal ridges on the epispore, a unique character in the genus. Ascospores of the collections from Martinique are strikingly similar to those of *B. sinuosa* regarding shape and ornamentation and it makes no doubt they are very closely related. However, their ascospores differ in being significantly larger, averaging 38 × 12.8 μm vs. 28 × 8.8 μm, thus we propose the new variety *macrospora* to accommodate the taxon from Martinique. Other characters deviating from the typical variety are the thicker stromata with tubular perithecia and the more acute and often pinched ends of ascospores and their apparent lack of a germ slit. The latter character is difficult to assess because of the alternating light and dark stripes on ascospore surface and we may have overlooked it despite a careful examination after incubation in PVA-lactophenol. The stromatal characters are less informative since their natural range of variation in typical *B. sinuosa* is unknown.

### Table 4 – Ascospore dimensions in seven collections of *B. philippinensis* showing the range of intraspecific variations, compared with those recorded by Ju et al. (1998).

<table>
<thead>
<tr>
<th>Collections number</th>
<th>Ascospore measurements with extreme values in parentheses</th>
<th>Q = quotient l/w</th>
<th>Mean values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLL 8391</td>
<td>(20.8–)21.8–23.9(–26.7) × (11.1–)11.9–13.6(–14.1) μm</td>
<td>Q = (1.6–)1.7–2(–2.1), N = 60</td>
<td>Me = 22.8 × 12.7 μm, Qe = 1.8</td>
</tr>
<tr>
<td>MJF 10187</td>
<td>(19–)19.7–23.2(–24.5) × (10.4–)10.9–12.6(–13.2) μm</td>
<td>Q = (1.5–)1.7–2(–2.1), N = 60</td>
<td>Me = 21.4 × 11.8 μm, Qe = 1.8</td>
</tr>
<tr>
<td>MJF 10192</td>
<td>(18.3–)19.7–21.9(–22.7) × (10.4–)11.1–12.6(–12.9) μm</td>
<td>Q = (1.6–)1.6–1.9(–2.1), N = 60</td>
<td>Me = 20.8 × 11.8 μm, Qe = 1.8</td>
</tr>
<tr>
<td>MJF 13144</td>
<td>(21–)21.7–24.5(–25.1) × (10.6–)11.8–13.3(–13.9) μm</td>
<td>Q = (1.6–)1.7–2(–2.2), N = 60</td>
<td>Me = 23.1 × 12.6 μm, Qe = 1.8</td>
</tr>
<tr>
<td>MJF 13161</td>
<td>(18.4–)20.5–23.6(–25.1) × (10.1–)10.6–12.4(–12.7) μm</td>
<td>Q = (1.6–)1.7–2(–2.4), N = 60</td>
<td>Me = 22 × 11.5 μm, Qe = 1.9</td>
</tr>
<tr>
<td>MJF 13305</td>
<td>(19.2–)21.2–24.5(–25.1) × (10–)10.8–12.5(–13.3) μm</td>
<td>Q = (1.7–)1.8–2(–2.4), N = 60</td>
<td>Me = 22.6 × 11.6 μm, Qe = 1.9</td>
</tr>
<tr>
<td>MJF 13329</td>
<td>(18.7–)20.3–22.8(–24.3) × (9.5–)10.8–12.2(–12.5) μm</td>
<td>Q = (1.6–)1.7–2(–2.3), N = 60</td>
<td>Me = 21.4 × 11.6 μm, Qe = 1.9</td>
</tr>
<tr>
<td><strong>Cumulated values</strong></td>
<td>(18.3–)19.7–24.5(–26.7) × (10.1–)10.6–13.6(–14.1) μm</td>
<td>Q = (1.5–)1.6–2(–2.4), N = 420</td>
<td>Me = 22 × 11.9 μm, Qe = 1.85</td>
</tr>
<tr>
<td><strong>Ju et al. (1998)</strong></td>
<td>22–27 × 11.5–13 μm</td>
<td>Me = 24.5 × 12.2 μm, Qe = 2</td>
<td></td>
</tr>
</tbody>
</table>
Plate 15 – Biscogniauxia sinuosa var. macrospora

A-D, F-I: MJF 16072 Holotype; E, J, K: MJF 10245. A: Widely effused stroma on host surface; B: Close-up on stromatal surface showing the punctate ostioles; C: Mature stroma with remnants of the dehiscing outer layer at margins (arrows); D: Stroma in vertical section (broken) showing the carbonaceous tissue encasing the tubular perithecia; E: Mature and immature asci in Melzer’s reagent; F-H: Variously shaped ascal apical apparati in Melzer’s reagent; I: Mature ascospores in 1% SDS; J: Immature ascospores in PVA-lactophenol, showing the longitudinal ridges; K: Mature ascospores in PVA-lactophenol showing less contrasted ridges. Scale bars: A, C = 10 mm; B = 0.2 mm; D = 0.5 mm; E = 50 μm; F-H = 5 μm; I-K = 20 μm.
Stromata aplanate, orbicular to irregularly ellipsoid-loshed, 4–45 mm long × 1.5–18 mm wide × 0.4–0.6 mm thick, frequently coalescent into longer compound stromata, with sloping margins and usually lacking remnants of the outer dehiscing layer at maturity; mature surface brownish black to greyish black, matt, usually even, carbonaceous beneath surface and between perithecia, tissue beneath perithecia absent to 80 μm thick, black, slightly carbonaceous, underlying bark tissue weakly pigmented. Perithecia ovoid, short-cylindrical or oblong, frequently laterally and basally flattened, 0.3–0.42 mm high × 0.17–0.2 mm wide, opening centrally or laterally through individual ostioles. Ostioles punctate with a low rim to slightly papillate with obtuse to truncate top, rarely umbilicate, black, at times somewhat shiny, 50–80 μm diam, evenly distributed, often plugged with greyish substance when punctate.

Asci cylindrical, with 8 uniseriate ascospores, short-stipitate, the spore-bearing parts 67–82 × 5.5–6.5 μm, the stipes 6–15 μm long, with apical apparatus 1.43–2.2×3.5 μm (Me = 2.2 × 2.8 μm; N = 40), short-cylindrical to slightly trapezoid, bluing in Melzer’s reagent.

Paraphyses sparse, hyphal, unbranched, thin-walled, septate, 4–8.5 μm wide at base and constricted at basal septa, tapering above asci. Ascospores (7.2–8.1–11.5–12.1 μm × (3.7–)4.1–5.8–(6.4) μm, not including appendage; Q = (1.4–)1.7–2.5–(2.8), N = 780 (Me = 9.6 μm; Qe = 2), medium to dark reddish brown, ellipsoid-inequilateral to almost equilateral with broadly rounded or pinched upper end and abruptly truncate lower end bearing a hyaline, thin-walled, hemispherical cellular appendage, most often collapsed or absent; smooth-walled, with a conspicuous, unilateral, straight germ slit almost spore-length either on dorsal or ventral side when inequilateral.

Asexual morph on the natural substrate not seen. Asexual morph in culture on OA periconiella-like, based on material from Taiwan (Ju et al., 1998).


Known distribution: Pantropical (Ju et al., 1998).

Discussion: The numerous collections studied above fit into the species concept of Biscogniauxia uniapiculata as defined by Ju et al. (1998) in having thin blackish stromata with punctate ostioles and appended, slightly inequilateral ascospores with a long straight germ slit either on the convex or the flattened side. However, as shown in Table 5, they deviate in having consistently smaller ascospores 8.1–11.5 × 4.1–5.8 μm, at the lower limit of the size range (9–10) × 5–7 μm accepted by Ju et al. (1998). Moreover, despite that they possess a widely truncate lower end, appendages are rarely observed, even on immature ascospores. Appendages when present appear shrivelled and inconspicuous, unlike those described and illustrated by Miller (1961) from the type material of B. uniapiculata from Indonesia (as Nummularia uniapiculata Penz. & Sacc.). A case could be made to segregate a Caribbean taxon based on these smaller ascospores usually devoid of cellular appendage but we refrain to do so because of a collection from Thailand (KP-JF 029, Table 5) whose ascospores deviate in a very similar way. The collections CLL 2348 and MJF 13191 differ from all above collections in having larger ascospores averaging respectively 11.5 × 5.7 μm and 11.6 × 5.6 μm (Table 5), which fits well the ascospore size range of B. uniapiculata. The collection CLL 2348 is depauperate and its overmature ascospores lack cellular appendages but those of MJF 13191 are in better condition and show conspicuous persistent appendages 2.1–3 × 2.4–3.3 μm (Me = 2.6 × 2.9 μm; N = 25), unlike all other examined collections from Guadeloupe and Martinique. The stroma of MJF 13191 are convex to pulvinate, 0.8–0.9 mm thick, thus thicker than in other collections, including CLL 2348, and greater than the range of 0.4–0.7 mm given by Ju et al. (1998) (Table 5). In parallel, its perithecia are tubular 0.6–0.7 mm high, which also deviates from the other material we studied and the data (0.3–0.6 mm high) recorded by Ju et al. (1998).

At the light of these discrepancies between collections of various origins, including the collection GUAD-213 dealt with further in this paper as cf. uniapiculata, B. uniapiculata can be suspected to represent a complex of related species in need of segregation. For the moment, we find more practical to accommodate our collections within the current wide concept of B. uniapiculata as defined by Ju et al. (1998) and to accept a high degree of intraspecific variations until the species is revised on a wider basis.


Stroma fragmentary, applanate, irregularly ellipsoid-loshed, 12 mm long × 10 mm wide × 0.38–0.42 mm thick, with sloping margins bearing blackish remnants of the outer dehiscing layer; mature surface grey to blackish grey, matt, slightly uneven, carbonaceous beneath surface and between perithecia, tissue beneath perithecia inconspicuous, not carbonaceous, underlying bark tissue not pigmented. Perithecia ovoid, frequently laterally and basally flattened, 0.3–0.35 mm high × 0.17–0.3 mm wide, opening centrally or laterally through individual ostioles. Ostioles obscurely papillate, blackish, most often inconspicuous.

Asci fragmentary, not measured, with apical apparatus 1.4–2 × 2.8–3.5 μm (Me = 1.6 × 3.2 μm; N = 20), discolored slightly trapezoid, bluing in Melzer’s reagent. Paraphyses not seen. Ascospores (10.8–)11.4–13.6–(14.7) × (5.5–)6.5–(6.9) μm, not including appendage when present, Q = (1.8–)1.9–2.3–(2.6), N = 60 (Me = 12.5 μm; Qe = 2), medium to dark reddish brown, ellipsoid-inequilateral to almost equilateral with broadly rounded or pinched upper end and a lower end either truncate and bearing a hyaline, thin-walled, hemispherical cellular appendage 1.3–1.7 μm long × 2.4–2.7 μm wide, most often collapsed or absent, or beaked to acutely apiculate, evenly pigmented; smooth-walled, with a conspicuous, unilateral, straight germ slit almost spore-length either on dorsal or ventral side when inequilateral.

Asexual morph on the natural substrate not seen.

Plate 16 – Biscogniauxia uniapiculata
A, B, H, K: MJF 13071; C, D, I, L: MJF 16154; E-G, J, M: MJF 13191. A-D: Variously shaped applanate stromata on host surface; E-G: Variously shaped pulvinate stromata on host surface; H-J: Stromatal surface in close-up showing ostioles; K-M: Stromata in vertical section (broken) showing the carbonaceous tissue encasing the variously shaped perithecia. Scale bars: A-C, E = 10 mm; D, F, G = 5 mm; H-M = 0.5 mm.
Plate 17 – Biscogniauxia uniapiculata

A-C, E, I: MJF 16154; B, J: MJF 10244; F-H, K: MJF 13191. A-C: Mature and immature asci, in diluted blue Pelikan® ink, 1% SDS and black Pelikan® ink respectively; D: Base of paraphyses, in diluted blue Pelikan® ink; E, H: Ascal tips in Melzer's reagent, showing the amyloid apical apparatus and the wide germ slit on a mature ascospore in E; F: Immature and mature appended ascospores in side view; G: Mature ascospore in side view with slightly pinched upper end and collapsed basal appendage; I-K: Ascospores in 1% SDS, with more or less collapsed appendages on an immature ascospore (red arrow) and on a mature ascospore (white arrow) (I). Scale bars: A-C = 20 μm; D, E, H, I-K = 10 μm; F, G = 5 μm.
Table 5 – Comparison of differential characters between various collections referable to *B. uniapiculata*, including those reported by Ju et al. (1998).

<table>
<thead>
<tr>
<th>Collections</th>
<th>Oстиoles</th>
<th>e = stroma thickness (mm)</th>
<th>Ascospores dimensions, Q = quotient l/w, N = number of measurements</th>
<th>Mean values</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>B. uniapiculata</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLL 2074-2</td>
<td>punctate</td>
<td>e = 0.4</td>
<td>(7.2–)8.1–9.5–(9.9) × (3.8–)4.1–5–(5.3) μm, Q = (1.6–)1.7–2.2–(2.4); N = 60</td>
<td>Me = 8.8 × 4.5 μm, Qe = 2</td>
</tr>
<tr>
<td>CLL 5404</td>
<td>papillate</td>
<td>e = 0.4</td>
<td>(9.1–)9.6–11.3–(11.7) × (4.9–)5.2–6.2–(6.4) μm, Q = (1.4–)1.7–2–(2.3); N = 60</td>
<td>Me = 10.4 × 5.7 μm, Qe = 1.8</td>
</tr>
<tr>
<td>CLL 5381</td>
<td>slightly papillate</td>
<td>e = 0.4</td>
<td>(9.9–)9.5–10.7–(11.5) × (4.5–)5.5–8–(6.4) μm, Q = (1.7–)1.7–2–(2.5); N = 60</td>
<td>Me = 10.1 × 5.4 μm, Qe = 1.9</td>
</tr>
<tr>
<td>CLL 6041</td>
<td>punctate</td>
<td>e = 0.6</td>
<td>(9–)9.2–10–(10.5) × (3.7–)4.1–4.8–(5.1) μm, Q = (1.8–)2.1–2.5–(2.8); N = 60</td>
<td>Me = 9.9 × 4.4 μm, Qe = 2.3</td>
</tr>
<tr>
<td>MJF 10244</td>
<td>punctate</td>
<td>e = 0.5</td>
<td>(8.8–)9–11–(11.6) × (4.4–)4.5–5–(5.7) μm, Q = (1.7–)1.9–2.3–(2.5); N = 60</td>
<td>Me = 10.1 × 4.9 μm, Qe = 2.1</td>
</tr>
<tr>
<td>MJF 10253</td>
<td>punctate</td>
<td>e = 0.4</td>
<td>(9.2–)9.6–11.5–(12.1) × (4.3–)4.7–5.5–(5.8) μm, Q = (1.7–)1.8–2–(2.3); N = 60</td>
<td>Me = 10.4 × 5.1 μm, Qe = 2</td>
</tr>
<tr>
<td>MJF 10307</td>
<td>punctate every</td>
<td>e = 0.55</td>
<td>(8.6–)9.2–10–(10.9) × (4.5–)4.6–5.2–(5.5) μm, Q = (1.7–)1.8–2–(2.4); N = 60</td>
<td>Me = 9.8 × 4.9 μm, Qe = 2</td>
</tr>
<tr>
<td>MJF 10319 twig</td>
<td>punctate</td>
<td>e = 0.5</td>
<td>(7.9–)8.4–9.9–(10.5) × (3.9–)4.1–4.7–(5.2) μm, Q = (1.7–)1.8–2.3–(2.6); N = 60</td>
<td>Me = 9.2 × 4.4 μm, Qe = 2.1</td>
</tr>
<tr>
<td>MJF 10322</td>
<td>punctate</td>
<td>e = 0.4</td>
<td>(7.7–)8.3–9.8–(10.4) × (4.2–)4.4–5–(5.2) μm, Q = (1.6–)1.8–2.1–(2.4); N = 60</td>
<td>Me = 9.1 × 4.6 μm, Qe = 2.1</td>
</tr>
<tr>
<td>MJF 10328</td>
<td>punctate to</td>
<td>e = 0.4</td>
<td>(7.7–)8.4–9.8–(10.5) × (4.2–)4.4–4.8–(5.1) μm, Q = (1.6–)1.8–2.3–(2.5); N = 60</td>
<td>Me = 9.1 × 4.5 μm, Qe = 2</td>
</tr>
<tr>
<td>MJF 13071</td>
<td>punctate</td>
<td>e = 0.5</td>
<td>(7.4–)8.6–10–(10.6) × (4.2–)4.5–5.1–(5.2) μm, Q = (1.6–)1.8–2.1–(2.2); N = 60</td>
<td>Me = 9.2 × 4.8 μm, Qe = 1.9</td>
</tr>
<tr>
<td>MJF 15063</td>
<td>punctate to</td>
<td>e = 0.4–0.5</td>
<td>(8–)8.8–10.6–(11.3) × (4.1–)4.5–5–(5.6) μm, Q = (1.7–)1.8–2.3–(2.5); N = 60</td>
<td>Me = 9.7 × 4.8 μm, Qe = 2</td>
</tr>
<tr>
<td>MJF 16154</td>
<td>umbilicate to</td>
<td>e = 0.4–0.5</td>
<td>(8.5–)8.9–10.2–(10.6) × (3.9–)4.3–5–(5.4) μm, Q = (1.6–)1.8–2.3–(2.5); N = 60</td>
<td>Me = 9.5 × 4.7 μm, Qe = 2</td>
</tr>
<tr>
<td>Thailand KP-JF 029</td>
<td>punctate</td>
<td>e = 0.35–0.4</td>
<td>(7.2–)8.1–11.5–(12.1) × (3.7–)4.1–5.8–(6.4) μm, Q = (1.4–)1.7–2.5–(2.8); N = 780</td>
<td>Me = 9.6 × 4.8 μm, Qe = 2</td>
</tr>
<tr>
<td>Ju et al. (1998)</td>
<td>punctate with</td>
<td>e = 0.4–0.7</td>
<td>(8.8–)9.1–10.4–(11.4) × (4.6–)5.1–5.8–(6.4) μm, Q = (1.5–)1.7–2–(2.2); N = 60</td>
<td>Me = 9.8 × 5.4 μm, Qe = 1.8</td>
</tr>
<tr>
<td>CLL 2348 depau-</td>
<td>papillate</td>
<td>e = 0.4</td>
<td>(10.8–)11.4–13.6–(14.7) × (5–)5.5–6.5–(6.9) μm, Q = (1.8–)1.9–2.3–(2.6); N = 60</td>
<td>Me = 12.5 × 6 μm, Qe = 2.1</td>
</tr>
<tr>
<td>perate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLL 13191</td>
<td>punctate</td>
<td>e = 0.9</td>
<td>(10–)10.5–12.5–(13.5) × (4.6–)5.1–6–(6.4) μm, Q = (1.8–)1.9–2.3–(2.4); N = 60</td>
<td>Me = 11.6 × 5.6 μm, Qe = 2.1</td>
</tr>
</tbody>
</table>

**Known distribution:** Guadeloupe.

**Discussion:** In absence of diagnostic stromatal characters for most taxa of *Biscogniauxia*, their identification is primarily based on ascospore morphology. Two main types of ascospores are distinguished, those with a cellular appendage or with a truncate base indicating the presence of a lost appendage, and those one-celled that lack a cellular appendage. This clear-cut distinction is usually discriminant but does not apply to the collection illustrated above, in which appended ascospores are mixed in almost equal proportions with non-appendaged ones. This collection was mentioned by Ju et al. (1998: 6) who suggested it "appears to be transitional between those *Biscogniauxia* species with persistent appendages and those without". An alternative to this interpretation would be to regard the appended ascospores as typical and the apiculate ones as atypical, resulting from developmental abnormalities recalling those observed in some species of *Nemania* S.F. Gray or *Xylaria* Hill ex Shrank in which “beaked” lower ends are sometimes encountered.
Plate 18 – Biscogniauxia cf. uniapiculata

GUAD-213. A: Fragmentary stroma on host surface with remnant of the outer dehiscing layer (arrow); B: Stromatal margin in close-up showing the remnant of the blackish outer dehiscing layer (arrow) lining the stroma; C: Stromatal surface in close-up showing blackish, obscurely papillate ostioles; D: Immature ascal tips in Melzer’s reagent, showing the amyloid apical apparati; E: Stroma in vertical section (broken) showing the carbonaceous tissue encasing the ovoid perithecia; F: Mature appendaged ascospore in dorso-lateral view showing a germ slit on the dorsal side; G: Mature appendaged ascospore in side view showing an apiculate upper end and a faint germ slit on the ventral side; H: Mature ascospore lacking appendage and apiculate at both ends; I, J: Variously shaped and appendaged immature and mature ascospores (F-J in 1% SDS). Scale bars: A = 5 mm; B = 1 mm; C, E = 0.5 mm; D, F-J = 5 μm.
and usually not given much taxonomic relevance. The wide range of variation in shape and dimensions observed amongst apiculate or beaked ascospores may support the hypothesis that they are abnormal, in contrast with the appendaged ones which show much less variations. If the abnormal ascospores are not taken into account, this collection appears to share most of the distinctive features of *B. uniapiculata*, including thin stromata with ovoid perithecium and ill-defined ostioles, asci with a small discoid apical apparatus and ascospores 10–14 × 5–7 μm (Table 5) with a frequently collapsed cellular appendage and a germ slit on either the most convex or the least convex side. Additional collections will be necessary to assess whether the peculiar ascospore morphology encountered in the specimen GUAD-213 warrants the segregation of a new taxon or merely reflects an extreme variation within *B. uniapiculata*, a species known to exhibit a high morphological variability (Ju et al., 1998; this paper).

Ascospores of *B. fuscella* (Rehm) F. San Martín & J.D. Rogers likewise feature appendaged mature ascospores along with non-appendaged ones, but in a much smaller proportion (Ju et al., 1998). Stromata of *B. fuscella* differ from those of GUAD-31 in being 1 mm thick and in having a white or buff-coloured outer dehiscing layer, and its ascospores differ in being 13–16.5 × 6.5–8 μm and ellipsoid, almost equilateral to fusoid; this rules out a possible conspecificity.


**Stromata** applanate to slightly convex, irregularly orbicular-lobed, 3–22 mm long × 4–12 mm wide × 1.7–2 mm thick, with abrupt margins lined at maturity by scattered remnants of the blackish outer dehiscing layer; mature surface dark brown, mottled with blackish patches in fertile areas, matt, even, carbonaceous beneath surface, woody-fibrous and greyish brown between perithecia and Guadaloupe (ROGERS et al., 2000), is a highly distinctive taxon readily recognized by the combination of small and thick stromata with long-tubular perithecium encased in woody-fibrous, non-carbonaceous tissue, whose contents are sticky and form stretched whitish filaments when cut. Its ascospores are 10–12 × 4.5–6 μm, inequilateral with a blunted, long germ slit on the convex side and bear a persistent, thick-walled hemispherical appendage on the truncate lower end. The most distinctive character, on which the specific epithet is based, is the presence of abundant, thick refractive filaments interspersed amongst the true hyphal paraphyses, giving a sticky texture to the perithecial contents, even when dry. The authors coined the term allophyses to designate this peculiar type of hamathecial element, whose presence is highly diagnostic. Wide hamathecial elements with refractive contents are known in some species of *Biscogniauxia* and *Camillea* and in a single species of *Hypoxylon* Bull., viz. *H. rugulosporum* K. Van der Gucht, Y.-M. Ju & J. D. Rogers (FOURNIER & LECHAT, 2015), but do not involve the striking formation of such long whitish strands when the stroma is cut. *Biscogniauxia viscicentra* var. *macrosora* J.D. Rogers & F.O. Hay was recently described from Hawaii and segregated from the typical variety based on larger ascospores 12–15 × 6–7 μm (ROGERS et al., 2008; ROGERS & Ju, 2012). The ascospore size range of 10.1–11.5 × 4.6–5.7 μm encountered in our collection clearly sets it in the typical variety.

The collection of *B. viscicentra* from Guadeloupe presented above is the second record worldwide of this distinctive species which was not found in Martinique despite a much more extensive sampling, suggesting it might be a rare species.

**Acknowledgements**

This work was carried out in the context of the research program “Inventaire mycologique des Petites Antilles. Biodiversité, écologie et protection” (running since 2006) promoted by the French Mycological Society (Paris, France), with the financial support of the National Forest Office (ONF Paris and ONF Martinique), the Regional Environmental Office (DIREN [now DEAL]) of Martinique (2006-2008) and Guadeloupe (2010), the “Parc naturel régional de Martinique” (2014-2015) and the Martinique regional administration (Communauté territoriale de Martinique) (2015). The Parc National de Guadeloupe granted collecting authorizations. The assistance by Félix Lurel for accommodation during field trips in Guadeloupe is sincerely acknowledged.

We gratefully acknowledge Prof. Jack Rogers (Pullman, USA) and Dr. Yu-Ming Ju (Academia Sinica, Taiwan) for their presubmission reviews and their helpful comments, corrections and suggestions to improve this article. Jean-Pierre Fiard (Martinique, FWI) is warmly thanked for his precious assistance during field work and for kindly sharing with us his invaluable knowledge of the forests of Martinique and their flora. Christophe Lécureu and Pierre-Arthur Moreau (LIP, France) are thanked for their precious help with collecting in Martinique. Françoise Candidoussau (France) is thanked for having communicated a fragment of the collection GUAD-213 made by J. Vivant. Martin Bemmann is warmly thanked for his judicious suggestions and for having drawn our attention on Rousset's article. Help from John Pilschke and Joe Tanney with finding ancient literature was likewise greatly appreciated. We are grateful to Dr. Robert Lücking (B, Germany) for having kindly answered our request about Duss' material. Nicolas Van Vooren (Lyon, France) is gratefully acknowledged for his invaluable editorship.

**References**

COURTECUISSE R. 2006. — Liste préliminaire des Fungi recensés dans les îles françaises des Petites Antilles : Martinique, Guadeloupe et...
Plate 19 – *Biscogniauxia viscosicentra*

CLL 2346. A: Stromata on host surface (arrows) erumpent from bark or from depauperate stromata of *B. capnodes*; B: Stroma in top view showing the mottled surface; C: Stroma in vertical section (cut) showing the long-tubular perithecia embedded in brown woody-fibrous tissue and the long whitish sticky filaments resulting from the cutting of the perithecial contents; D: Stromatal surface next to the margin in close-up showing umbilicate ostioles and remnants of the blackish outer dehiscing layer (arrow); E, F: Mature and immature asci with allopheges, in diluted blue Pelikan® ink and 1% SDS respectively; G: Ascospores in side view, in 1% SDS; H: Ascus tips in Melzer’s reagent, showing two amyloid apical apparatus; I: Ascospore in dorsal view showing a blurred germ slit, in black Pelikan® ink; J: Hamathecium in diluted blue Pelikan® ink, showing the paraphyses staining blue (white arrow) and the refractive unstained allopheges (red arrow). Scale bars: A = 10 mm; B = 2 mm; C, D = 1 mm; E, F, J = 20 μm; G, H = 10 μm; I = 5 μm.
Jacques Fournier  
Las Mulas  
09420 Rimont  
France  
jacques.fournier@club-internet.fr

Christian Lechat  
64 route de Chizé  
79360 Villiers-en-Bois  
France  
lechat@ascofrance.fr

Régis Courtecuise  
Université du Droit et de la Santé Lille 2  
Faculté des Sciences pharmaceutiques et biologiques  
3 rue du Professeur Laguesse, 59006 Lille Cédex, France  
regis.courtecuise@univ-lille2.fr