Stylonectria norvegica (Nectriaceae), a new species from Norway

Christian LECHAT
Jacques FOURNIER
Björn NORDÉN

Ascomycete.org, 7 (S) : 220-224.
Août 2015
Mise en ligne le 21/08/2015

Summary: Stylonectria norvegica sp. nov. is described from three collections on pyrenomycetous hosts on Quercus, Betula and Alnus in Norway. The fusarium-like asexual state was obtained in culture and the ITS1-5.8S-ITS2 loci were sequenced. This new species is described and illustrated and its affinities and differences with other species in the genus are discussed.

Keywords: Ascomycota, fungicolous, Hypocreales, ITS, taxonomie.

Résumé : Stylonectria norvegica sp. nov. est décrit à partir de trois récoltes sur des pyénomycètes variés en Norvège. Le stade asexué de type Fusarium a été obtenu en culture et les loci ITS1-5.8S-ITS2 ont été séquencés. Cette nouvelle espèce est décrite et illustrée, de même que ses affinités et ses différences avec les autres espèces connues du genre sont discutées.

Mots-clés : Ascomycota, fongicole, Hypocreales, ITS, taxinomie.

Introduction

Stylonectria Höhn. was erected by Höhn. (1915) to accommodate a supposed pycnidial phialidic asexual morph of Nectria applanata Fuckel, that he designated as the type species, S. applanata Höhn. As established first by Booth (1959) and subsequently recognized by Rossman et al. (1999) and Graevenhan et al. (2011), the supposed pycnidia were in fact perithecium filled with discharged ascospores, making the name Stylonectria eligible for a sexual morph.

Stylonectria was included by Booth (1959) in his broad concept of Nectria Fr. and Rossman et al. (1999) synonymized it with Cosmospora Rabenh. Graevenhan et al. (2011) presented a phylogenetic revision of the genus Cosmospora that was shown to be polyphyletic, leading to the resurrection of several genera, including Stylonectria.

As currently conceived, Stylonectria is morphologically characterized by pale yellow, dark orange to dark ascomata, each with a wide, distinctly flattened discoid apex, occurring in dense groups up to 20–30 on a hyphal hypostroma seated on effete stromata of mostly diaportheal pyrenomycetes. The ascomatal wall, composed of two regions, turns dark red to purple in 3% KOH and yellow in lactic acid, a feature characteristic of the Nectriaceae. The hypostroma is an old sporodochium previously bearing the fusarium-like asexual state, usually yielding microconidia and falcate macroconidia, the latter mostly 0–1-septate.

In addition to the type species S. applanata known from stromata of Melogramma bulliardii Tul. & C. Tul. on Corylus, Graevenhan et al. (2011) retained three species, viz.: S. carpinii Graevenhan on Carpinus betulus, on old pyrenomycetes, including Melanconis spodiacea Tul. & C. Tul.; S. purtonii (Grev.) Graevenhan on coniferous wood, possibly on Valsa sp. according to Booth (1959), and on old pyrenomycetes on Hippocrepis emerus; and S. wegelianiana (Rehm) Graevenhan, Voglmayr & Jaklitsch on old ascomata of Hapalocystis bicaudata Fuckel on Ulmus. Except for S. wegelianiana having significantly larger ascospores than other species of Stylonectria, the morphology of the sexual states is not different enough to distinguish species. Defining these species relies on phylogenetic comparison coupled with the morphology of asexual morphs obtained in culture as well as host affiliation.

During a pyrenomycetes workshop in south Norway in October 2014, a nectrioid ascomycete resembling Stylonectria was collected by two of the authors. These specimens were cultured and sequenced. This fungus represents a previously undescribed species in the genus Stylonectria. A morphological description of its asexual and sexual morphs is presented with illustrations, a maximum likelihood phylogeny of Stylonectria based on ITS1-5.8S-ITS2 sequences is provided, and the status of the new species within Stylonectria is discussed.

Materials and methods

Specimens were examined using the method described by Rossman et al. (1999). Microscopic observations and measurements were made from material mounted in water and ascospore ornamentation was observed in lactic cotton blue without heating. Cultures of the living specimen were made on PDA (Potato Dextrose Agar) with 5 mg/l of streptomycin in Petri dishes 9 cm diam. Centrum contents with asci and ascospores were removed from a perithecium with a fine needle and placed in a drop of sterile water that was stirred with a sterile needle. The drop with ascospores was placed on PDA using a sterile micropipette under an inverted microscope, then the Petri dishes were incubated at 25 °C.

DNA extraction, amplification, and sequencing: Mycelium from the surface of cultures was transferred to Eppendorf tubes and sent to the Canadian centre for DNA Barcoding (CCDB) in Guelph, Canada, for barcoding. There, DNA was extracted using the glass fiber plate DNA extraction protocol by Ivanova et al. (2015). PCR amplification followed Kuzmina & Ivanova (2015). Sequencing was performed using the primers ITS1-5 for the internal transcribed spacer (ITS) region according to White et al. (1990).

Phylogenetic analyses were performed online at www.phylogeny.lirmm.fr (Dereeper et al., 2008). Maximum likelihood phylogenetic analyses were performed with PhyML 3.0 aLRT (Zwickl, 2006), using the GTR + I + F model of evolution. Branch support was assessed using the nonparametric version of the approximate likelihood-ratio test, implemented in PhyML (SH-aLRT) (Anisimova & Gascuel, 2006).

Taxonomy

Stylonectria norvegica Lechat, J. Fourn. & Nordén sp. nov. — Mycobank MB 813734. Plates 1–2, Fig. 1

Diagnosis: Differs from its closest relative, Stylonectria carpinii, by 10% difference in ITS sequences, in not producing microconidia in culture, and in having smaller macroconidia (8.5–10–13(–14) × 1.8–2.5 μm vs. 15–45 × 3–3.5 μm).

Etymology: The epithet *norvegica* refers to Norway, the country where this species was collected.

Ascomata in groups of 5–25(–30), erumpent to superficial with base remaining immersed in a hypostroma of fusarium-like sporodochia, arising from dead pyrenomycetes, yellow, dark orange to bright red, turning dark purple in 3% KOH and yellow in lactic acid, subglobose to obpyriform, not collapsing or laterally pinched upon drying, 250–330(–350) μm high, 200–300 μm diam, apex broadly discoid, flattened 50–70 μm high × 160–220 μm diam, slightly constricted below, with a minute, pallid, conical central papilla. **Ascomatal wall** in vertical section 35–40 μm thick at sides, 25–30 μm thick at base, of two intergrading regions: outer region 25–35 μm thick, of thick-walled cells lacking a definite shape, in surface view appearing as intertwined hyphae; inner region of thin-walled hyaline, flattened cells; apex of palisadic, thick-walled, elongate cells with slightly swollen tips. **Asci** unitunicate, cylindrical to narrowly clavate, short-stipitate, containing eight ascospores obliquely uniseriate or irregularly biseriate above and uniseriate below, (60–165–75(–78) × 6–7(–8) μm, apicately truncate when immature, becoming rounded, when mature, without ring. **Ascospores** (8–)8.5–9.5(–11) × 3.5–4.2(–4.5) μm (X = 9 μm, n = 30), ellipsoid, equally two-celled, constricted at septum, thick-walled, hyaline to pale yellowish-brown, with 2–3 small guttules in each cell, smooth-walled.

Asexual state: fusarium-like on sporodochia.

Cultural characteristics: After one week at 25 °C, colony 3–4 cm diam, pale orange, producing a slow-growing fusarium-like asexual morph, sporulating at white to cream margin. No microconidia produced. Macroconidia cylindrical to long-fusiform, falcate, acute at both ends, 1-septate, (8.5–10–13(–14) × 1.8–2.5 μm, smooth, hyaline.

Discussion: *Stylonectria norvegica* conforms to *Stylonectria* as defined by *Stylonectria* norvegica clearly differs from *S. wegeliniana* by the smaller, smooth ascospores but has ascospores dimensions in the same range as *S. applanata*, *S. carpini* and *S. purtonii*. Our phylogenetic dendrogram (Fig. 1) shows that the three collections of *S. norvegica* cluster together sister to *S. carpini* but are more distant from *S. applanata* and *S. purtonii*. *Stylonectria norvegica* differs from *S. carpini* by lacking microconidia in culture and by having smaller macroconidia (8.5–10–13(–14) × 1.8–2.5 μm vs. 15–45 × 3–3.5 μm (according to

Fig. 1 – Maximum likelihood phylogeny of *Stylonectria norvegica* from ITS1-5.8S-ITS2 sequences rooted with *Bionectria ochroleuca*. 221
Plate 1 — Stylonectria norvegica
Legend of Plate 1. a-g: Stylonectria norvegica (Holotype) in the natural substratum; a: Ascomata with typically flattened-discoid apices; b: Sporodochium of the fusarium-like morph in side view; c: Sporodochium of the fusarium-like morph in vertical section; d: Ascomata seated on sporodochium; e-g: Sporodochia and ascomata on substratum after removal of the périderm.

Legend of Plate 2. a-g: Stylonectria norvegica. a: Close-up of an ascoma in side view, in water; b: Lateral ascomatal wall in vertical section, in water; c: Asci and ascospores, in water; d-f: Cultures after nine days: d: CLL14047, e: CLL14033, f: CLL14050.

Booth, 1971). Moreover, pairwise alignment indicates only 90% similarity between ITS sequences of S. carpini and S. norvegica. According to Grafenhan et al. (2011), S. carpini is affiliated with pyrenomycetes occurring on Carpinus, while S. norvegica occurs on pyrenomycetes on Alnus glutinosa, Betulas pendula (Betulaceae) and Quercus sp. (Fagaceae) and is thus not host-specific. Species in Stylonectria are usually considered to be host specific, such as S. carpini on pyrenomycetes on Carpinus and S. wegeliniana on Hapalocystis bicaudata on Ulmus glabra but only a limited number of collections are known. Most hosts of Stylonectria are presumably diaporthalean, this assumption is hampered by the difficulty of identifying effete pyrenomycetes. The presence or absence of an apical ring in the ascis may further differentiate species of Stylonectria but this characteristic is not documented for all species.

Another species previously placed in the broadly conceived Cosmospora, namely Nectria magnusiana Rehm ex Sacc., may belong in Stylonectria. Booth (1959) described its ascomata with flat discoid apices clustered on sporodochia producing microconidia and occurring on Diatrypella favacea and D. quercina. This species differs from S. wegeliniana by smaller, smooth-walled ascospores 10–15 × 4.6–6 μm (Booth, 1959), and from S. purtonii, S. applanata and their relatives by significantly larger ascospores.

Stylonectria is currently a small and poorly known genus but further additions of new species so far regarded as Cosmospora sp. might be expected in the future.

Acknowledgements

The workshop in Tønsberg, south Norway, was funded by a grant to BN from the Norwegian Biodiversity Information Centre. BN is grateful to Teppo Rämä (Tromsø) for help with laboratory work. Dr. Amy Rossman is gratefully acknowledged for her presubmission review and for helpful comments and suggestions.

References

Christian Lechat
64 route de Chizé
79360 Villiers-en-Bois
France
lechat@ascofrance.fr

Jacques Fournier
Las Muros
09420 Rimont
France
jacques.fournier@club-internet.fr

Björn Nordén
The Norwegian Institute for Nature Research
Gaustadalleen 21, 0349 Oslo
Norway
bjorn.norden@nina.no

Legend of Plate 1.

Assuming that there are usually considered to be host specific, such as S. carpini on pyrenomycetes on Carpinus and S. wegeliniana on Hapalocystis bicaudata on Ulmus glabra but only a limited number of collections are known. Most hosts of Stylonectria are presumably diaporthalean, this assumption is hampered by the difficulty of identifying effete pyrenomycetes. The presence or absence of an apical ring in the ascis may further differentiate species of Stylonectria but this characteristic is not documented for all species.

Another species previously placed in the broadly conceived Cosmospora, namely Nectria magnusiana Rehm ex Sacc., may belong in Stylonectria. Booth (1959) described its ascomata with flat discoid apices clustered on sporodochia producing microconidia and occurring on Diatrypella favacea and D. quercina. This species differs from S. wegeliniana by smaller, smooth-walled ascospores 10–15 × 4.6–6 μm (Booth, 1959), and from S. purtonii, S. applanata and their relatives by significantly larger ascospores.

Stylonectria is currently a small and poorly known genus but further additions of new species so far regarded as Cosmospora sp. might be expected in the future.

Acknowledgements

The workshop in Tønsberg, south Norway, was funded by a grant to BN from the Norwegian Biodiversity Information Centre. BN is grateful to Teppo Rämä (Tromsø) for help with laboratory work. Dr. Amy Rossman is gratefully acknowledged for her presubmission review and for helpful comments and suggestions.

References

